2.2.294 Euler's method word problem

Click For Summary
SUMMARY

The discussion focuses on solving a word problem using Euler's method to estimate the velocities of George and his paper boat. The velocity of George is represented by the function g(t), with specific values provided in a table. The velocity of the paper boat is modeled by the function p(t) = (e0.05t - cos(0.35t))(6 - t/5). The derivative p'(7) is calculated to be approximately 0.9153, while the estimate for g'(10.5) is determined to be 3/7 m/s2.

PREREQUISITES
  • Understanding of basic calculus concepts, including derivatives
  • Familiarity with Euler's method for numerical approximation
  • Knowledge of functions and their graphical representations
  • Ability to interpret and manipulate mathematical expressions
NEXT STEPS
  • Study the application of Euler's method in different contexts
  • Learn about the properties of exponential and trigonometric functions
  • Explore numerical methods for solving differential equations
  • Practice calculating derivatives of composite functions using the chain rule
USEFUL FOR

Students studying calculus, educators teaching mathematical modeling, and anyone interested in numerical methods for estimating function behaviors.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
George makes a paper boat with his brother Bill and goes out in the rain to play with it. It falls in the stream along the curb, racing towards the sewer.
Let t be measured in seconds, p be the velocity of the paper boat in meters/second and g be George’s velocity, measured in meters/seconds.
At $t = 28$, if George has not retrieved his boat, it will fall in the sewer, Let the position of George and his boat both be 0 at $t = 0$
$$\begin{array}{rrrrrrr}
x&0&7&14&21&28\\
g(t)&0&5&8&6&4
\end{array}$$
a. George's velocity is modeled by the function $g(t)$. Certain values of g are given in the table. Estimate the value of $g'(10.5)$, including units of measure.

the table points are on this Desmos plot. the first 3 pts are not a straight line but could represent a section of a parabola
then take the d/dx?

View attachment 9314

ok actually not sure what to do with this and its due tom
 
Last edited:
Physics news on Phys.org
c. The velocity of the paper boat is modeled by the function
$\displaystyle p(t)=(e^{0.05t}-\cos(0.35t))\left[6-\dfrac{t}{5}\right]$
what is the value of $p'(7)$
$$p'=\frac{0.2\left(-t+30\right)\left(e^{0.05\left(t\right)}-\cos\left(0.35\left(t\right)\right)\right)}{t}$$
then
$$p'(7)=\frac{0.2\left(-t+30\right)\left(e^{0.05\left(t\right)}-\cos\left(0.35\left(t\right)\right)\right)}{t}=1.43868207031$$
 
Last edited:
$t=10.5$ is midway between $t=7$ and $t=14$

best estimate with the given data ...

$g'(10.5) \approx \dfrac{g(14)-g(7)}{14-7} = \dfrac{3}{7} \, m/s^2$
 
skeeter said:
$t=10.5$ is midway between $t=7$ and $t=14$

best estimate with the given data ...

$g'(10.5) \approx \dfrac{g(14)-g(7)}{14-7} = \dfrac{3}{7} \, m/s^2$
thanks
 
karush said:
c. The velocity of the paper boat is modeled by the function
$\displaystyle p(t)=(e^{0.05t}-\cos(0.35t))\left[6-\dfrac{t}{5}\right]$
what is the value of $p'(7)$
$$p'=\frac{0.2\left(-t+30\right)\left(e^{0.05\left(t\right)}-\cos\left(0.35\left(t\right)\right)\right)}{t}$$
then
$$p'(7)=\frac{0.2\left(-t+30\right)\left(e^{0.05\left(t\right)}-\cos\left(0.35\left(t\right)\right)\right)}{t}=1.43868207031$$

done
 
$p(t) = [e^{0.05t}-\cos(0.35t)] \cdot \left(6-\dfrac{t}{5}\right)$

$p'(t) = [e^{0.05t}-\cos(0.35t)] \cdot \left(-\dfrac{1}{5}\right) + \left(6-\dfrac{t}{5}\right) \cdot [0.05e^{0.05t}+0.35\sin(0.35t)]$

$p'(7) = [e^{0.35}-\cos(2.45)] \cdot \left(-\dfrac{1}{5}\right) + \left(\dfrac{23}{5}\right) \cdot [0.05e^{0.35}+0.35\sin(2.45)] = 0.9153$
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
6K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 233 ·
8
Replies
233
Views
24K
Replies
20
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
18
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
7K