2 Masses and a Wheel (with mass)

Click For Summary

Homework Help Overview

The discussion revolves around a physics problem involving two masses and a wheel, focusing on the relationship between linear and rotational motion. Participants explore the equations governing the system's dynamics, particularly how acceleration relates to the forces acting on the masses and the wheel's rotation.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants discuss the application of kinematic equations and the relationship between linear acceleration and angular acceleration. There are attempts to derive expressions for final velocity and acceleration based on the forces involved. Some participants question the assumptions made regarding tension in the string and the acceleration of the masses.

Discussion Status

Multiple interpretations of the problem are being explored, with some participants providing alternative approaches to calculate acceleration and final velocity. There is a recognition of differing results among participants, indicating an ongoing examination of the problem without a clear consensus on the correct solution.

Contextual Notes

Some participants note that certain values, such as the radius of the wheel, were not provided in the problem statement, which may affect the calculations. Additionally, there is mention of the gravitational constant used in calculations, highlighting potential variations in assumptions about the system.

PhDeezNutz
Messages
851
Reaction score
561
Homework Statement
See Pic Below
Relevant Equations
##v_f^2 = v_i^2 + 2a \Delta y##
##I_{ring} = m_w R^2##
## a = R \alpha##
##\sum \tau = I \alpha##
FF7B6B34-823F-4FAD-BB21-F7D4F98EB389.jpeg



The equation that connects final velocity with distance traveled is

##v_f^2 = v_i^2 + 2a \Delta y##

Since the system starts from rest ##v_i = 0##

and the above equation becomes.

##v_f^2 = 2a \Delta y##

Since there is rotation in this system we need to connect ##a## to the rotation of the wheel. ##a = \alpha R##. So that becomes

##v_f^2 = 2 \alpha R \Delta y##

Now we need to find ##\alpha## my summing the torques and setting it equal to ##I \alpha## where ##I = m_w R^2##. Although R wasn't given in the problem statement I figure we still need it even though it will cancel out in the end.


##\sum \tau = I \alpha##

I'm going to choose the counterclockwise direction as positive.

##MgR - mgR = m_w R^2 \alpha##

##\alpha = \frac{g R\left(M-m \right)}{m_w R^2} = \frac{g \left(M - m \right)}{m_w R}##

So

##v_f^2 = 2 \left(\frac{g\left( M - m\right)}{m_w R} \right) R \Delta y##

##v_f = \sqrt{\frac{2g \left(M-m\right)}{m_w} \Delta y}##

When I plug in ##M = 20##, ##m = 5##, ##m_w = 10##, and ##\Delta y = 1## I get

##v_f = 5.42##

Where did I go wrong? This is different than the stated answer.
 
Physics news on Phys.org
You can't assume that the mass ##M## creates a tension of ##Mg## in the string. If it did, it would not iself be accelerating.
 
  • Like
Likes   Reactions: PhDeezNutz
PS I don't get any of those answers!
 
  • Like
Likes   Reactions: PhDeezNutz
PeroK said:
PS I don't get any of those answers!
Did you get 2.89 m/s?
 
PhDeezNutz said:
Did you get 2.89 m/s?
Yes, with ##g = 9.8m/s^2##.

Here's a quick way. Note that ##M, m## and every mass element on the rim of the wheel must have the same speed ##v##. The total external force on the system is ##Mg - mg##, so we have:
$$a = \frac{M-m}{M+m+m_w}g$$
 
  • Like
Likes   Reactions: PhDeezNutz
PS From the kinematic equation, we have:
$$v^2 = 2as$$And this is also what we get from the energy equation:
$$\frac 1 2(M + m + m_w)v^2 = (M-m)gs$$Where ##s## is the distance ##M## moves.

You can also verify the trick, as the total KE is:
$$KE = \frac 1 2(M+m)v^2 + \frac 1 2 I_w \omega^2$$And$$I_w \omega^2 = m_wR^2(\frac v R)^2 = m_wv^2$$
 
  • Like
Likes   Reactions: PhDeezNutz
PeroK said:
Yes, with ##g = 9.8m/s^2##.

Here's a quick way. Note that ##M, m## and every mass element on the rim of the wheel must have the same speed ##v##. The total external force on the system is ##Mg - mg##, so we have:
$$a = \frac{M-m}{M+m+m_w}g$$
That’s exactly what I got!!

Just to hash out details.

Torque Equation on the Wheel

##m_w R^2 \alpha = m_w R^2 \frac{a}{R} = m_w aR = F_1 R - F_2 R##

Force on ##M##

##Mg - F_1 = Ma##

##F_2 - mg = ma##

So

##F_1 = M \left( g - a\right)##
##F_2 = m\left( a + g \right)##

Plugging that into the sum of torques equation

##m_w a R = MgR - MaR - maR -mgR##

leading to your result

## a = \frac{\left( M-m \right)g}{m_w + m + M}##

All that is left to do is plug it into ##v_f = \sqrt{2 a \Delta y}##
 
  • Like
Likes   Reactions: PeroK

Similar threads

Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
Replies
1
Views
1K
  • · Replies 97 ·
4
Replies
97
Views
6K
  • · Replies 13 ·
Replies
13
Views
1K