2 questions regarding initial values and verifying solutions

  • Context: MHB 
  • Thread starter Thread starter nathancurtis111
  • Start date Start date
  • Tags Tags
    Initial
Click For Summary

Discussion Overview

The discussion revolves around two questions related to differential equations, specifically focusing on initial value problems and the differentiability of solutions. The first question involves finding constants in a general solution of a second-order linear differential equation, while the second question addresses the differentiability and smoothness of solutions to another differential equation.

Discussion Character

  • Homework-related
  • Mathematical reasoning
  • Technical explanation
  • Exploratory

Main Points Raised

  • One participant expresses confusion over the initial value problem and seeks guidance on finding constants in the general solution of the equation \(y'' + \pi^2 y = 0\) given specific initial conditions.
  • Another participant provides a detailed explanation of how to derive the system of equations from the general solution and suggests that the participant can simplify and solve the equations themselves.
  • In response to the second question about the equation \(y'' - xy' + y = 0\), one participant argues that the solution is at least twice differentiable and proposes that it can be shown to be three times differentiable and smooth based on the relationships between the derivatives.
  • A later reply elaborates on the differentiation process and suggests that integrating the derived equation can lead to an explicit solution for \(f\).
  • Another participant shares a more complex approach to solving the second differential equation, referencing a method involving the multiplication of solutions and deriving a first-order ODE.
  • Further contributions include a series expansion analysis of a function derived from the general solution, indicating that it converges for all real and complex \(x\).

Areas of Agreement / Disagreement

There is no clear consensus on the smoothness and differentiability of the solutions to the second differential equation, as participants present different approaches and reasoning without reaching a definitive agreement.

Contextual Notes

The discussion includes various assumptions about the differentiability of functions and the methods used to derive solutions, which may depend on the specific definitions and contexts of the differential equations involved.

nathancurtis111
Messages
10
Reaction score
0
I want to start out with a quick disclaimer, we had a 75 question homework packet assigned a few weeks ago with a few questions from every lecture and this first one is due tomorrow. I missed a lecture, so am completely lost on 3 questions from that lecture. Just don't want it to seem like I'm dumping my whole homework assignment on here so I don't have to do it myself! Just so close to finishing this monstrous packet and need some guidance! Here are the first 2 questions:

Question 1:
The function f: (all real) -> (all real) is defined by the set
{ y''+(pi)2y=0
S: { y(1/3) = (3).5
{ y'(1/3) = -pi

Find two numbers (c1 and c2) such that
c1cos((pi)x) + c2 sin((pi(x))Question 2:
Let f: I -> (all real) be a solution of the diff eq y''-xy'+y=0
a) is f 3 times differentiable?
b) is f smooth?
 
Physics news on Phys.org
nathancurtis11 said:
I want to start out with a quick disclaimer, we had a 75 question homework packet assigned a few weeks ago with a few questions from every lecture and this first one is due tomorrow. I missed a lecture, so am completely lost on 3 questions from that lecture. Just don't want it to seem like I'm dumping my whole homework assignment on here so I don't have to do it myself! Just so close to finishing this monstrous packet and need some guidance! Here are the first 2 questions:

Question 1:
The function f: (all real) -> (all real) is defined by the set
{ y''+(pi)2y=0
S: { y(1/3) = (3).5
{ y'(1/3) = -pi

Find two numbers (c1 and c2) such that
c1cos((pi)x) + c2 sin((pi(x))

Since the general solution of $y^{\prime\prime}+\pi^2 y=0$ is $y=c_1\cos(\pi x)+c_2\sin(\pi x)$, it follows that $y^{\prime}=-\pi c_1\sin(\pi x) + \pi c_2\cos(\pi x)$. At this point, you would want to plug in the initial conditions $y(1/3)=\sqrt{3}$ and $y^{\prime}(1/3)=-\pi$ to get the system of equations
\[\left\{\begin{aligned} c_1\cos\left(\frac{\pi}{3}\right) + c_2\sin\left(\frac{\pi}{3}\right) &= \sqrt{3} \\ -\pi c_1\sin\left(\frac{\pi}{3}\right) + \pi c_2\cos\left(\frac{\pi}{3}\right) &= -\pi\end{aligned}\right.\]
I'll leave simplifying the system of equations to you, as well as solving the system. All in all, it shouldn't be too difficult to finish off the problem from here.
Question 2:
Let f: I -> (all real) be a solution of the diff eq y''-xy'+y=0
a) is f 3 times differentiable?
b) is f smooth?
If $f:I\rightarrow \mathbb{R}$ is a solution to $y^{\prime\prime}-xy^{\prime}+y=0$, then we know for sure it's at least two times differentiable; in particular, if $y=f(x)$ is the solution, then we know that $f^{\prime\prime}(x)= xf^{\prime}(x) - f(x)$. Now, $x$, $f(x)$ are at least twice differentiable and $f^{\prime}(x)$ is at least once differentiable; thus, it follows that
\[\frac{d}{dx}\left(xf^{\prime}(x)-f(x)\right)= f^{\prime}(x) + xf^{\prime\prime}(x) - f^{\prime}(x) = xf^{\prime\prime}(x) = x^2f^{\prime}(x)-xf(x).\]
Thus, we've expressed the third derivative of $f$ in terms of functions that are at least once and twice differentiable. To me, this is good enough to show that $f$ is at least three times differentiable. You can extend this argument to showing that $f(x)$ is smooth (i.e. infinitely times differentiable) by showing that the higher order derivatives can be defined in terms of the lower order derivatives.

If you have any follow-up questions, don't hesitate to post them!

I hope this makes sense!
 
Thank you Chris! Once explained I realized how easy they actually were, just was frustrated never seeing anything of the sort before that wasn't quite sure how to get started.
 
Let me add a bit. As Chris mentioned differentiating both sides gives

$f''' = x f''$

This you can integrate to find $f$ explicitly!
 
nathancurtis11 said:
Question 2:
Let f: I -> (all real) be a solution of the diff eq y''-xy'+y=0
a) is f 3 times differentiable?
b) is f smooth?

The solving procedure for a second order incomplete linear ODE ...

$\displaystyle y^{\ ''} - x\ y^{\ '} + y =0\ (1)$

... has been illustrated in...

http://mathhelpboards.com/differential-equations-17/how-solve-differential-equation-second-order-linear-variable-coefficient-2089.html#post9571

If u and v are solution of (1), then is...

$\displaystyle u^{\ ''} - x\ u^{\ '} + u = 0$

$\displaystyle v^{\ ''} - x\ v^{\ '} + v = 0\ (2)$

... and multiplying the first equation by v and the second by u a computing the difference we have...

$\displaystyle v\ u^{\ ''} - u\ v^{\ ''} - x\ (v\ u^{\ '} - u\ v^{\ '}) = 0\ (3)$

... and taking $\displaystyle z= v\ u^{\ '} - u\ v^{\ '}$ we have the first order ODE...

$\displaystyle z^{\ '} = x\ z\ (4)$

... the solution of which is...

$\displaystyle z= c_{2}\ e^{\frac{x^{2}}{2}}\ (5)$

From (5) we3 derive...

$\displaystyle \frac{z}{v^{2}} = \frac{d}{dx} (\frac{u}{v}) = c_{2}\ \frac{e^{\frac{x^{2}}{2}}}{v^{2}} \implies u = c_{1}\ v + c_{2}\ v\ \int \frac{e^{\frac{x^{2}}{2}}}{v^{2}}\ dx\ (6)$

It is easy to verify that $\displaystyle v=x$ is solution of (1) and that means that from (6) we derive that $\displaystyle u = x\ \int \frac{e^{\frac{x^{2}}{2}}}{x^{2}}\ dx$ is also solution and the general solution of (1) is...

$\displaystyle y = c_{1}\ x + c_{2}\ x\ \int \frac{e^{\frac{x^{2}}{2}}}{x^{2}}\ dx\ (7)$

A precise characterization of the u(x) has to be made before to answer the points 1 and 2...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
The solving procedure for a second order incomplete linear ODE ...

$\displaystyle y^{\ ''} - x\ y^{\ '} + y =0\ (1)$

... has been illustrated in...

http://mathhelpboards.com/differential-equations-17/how-solve-differential-equation-second-order-linear-variable-coefficient-2089.html#post9571

If u and v are solution of (1), then is...

$\displaystyle u^{\ ''} - x\ u^{\ '} + u = 0$

$\displaystyle v^{\ ''} - x\ v^{\ '} + v = 0\ (2)$

... and multiplying the first equation by v and the second by u a computing the difference we have...

$\displaystyle v\ u^{\ ''} - u\ v^{\ ''} - x\ (v\ u^{\ '} - u\ v^{\ '}) = 0\ (3)$

... and taking $\displaystyle z= v\ u^{\ '} - u\ v^{\ '}$ we have the first order ODE...

$\displaystyle z^{\ '} = x\ z\ (4)$

... the solution of which is...

$\displaystyle z= c_{2}\ e^{\frac{x^{2}}{2}}\ (5)$

From (5) we3 derive...

$\displaystyle \frac{z}{v^{2}} = \frac{d}{dx} (\frac{u}{v}) = c_{2}\ \frac{e^{\frac{x^{2}}{2}}}{v^{2}} \implies u = c_{1}\ v + c_{2}\ v\ \int \frac{e^{\frac{x^{2}}{2}}}{v^{2}}\ dx\ (6)$

It is easy to verify that $\displaystyle v=x$ is solution of (1) and that means that from (6) we derive that $\displaystyle u = x\ \int \frac{e^{\frac{x^{2}}{2}}}{x^{2}}\ dx$ is also solution and the general solution of (1) is...

$\displaystyle y = c_{1}\ x + c_{2}\ x\ \int \frac{e^{\frac{x^{2}}{2}}}{x^{2}}\ dx\ (7)$

A precise characterization of the u(x) has to be made before to answer the points 1 and 2...

If we analyse the function...

$\displaystyle u(x) = x\ \int \frac{e^{\frac{x^{2}}{2}}}{x^{2}}\ d x\ (1)$

... using the series expansion...

$\displaystyle e^{\frac{x^{2}}{2}} = 1 + \frac{x^{2}}{2} + \frac{x^{4}}{8} + \frac{x^{6}}{48} + ...\ (2)$

... with symple steps we obtain...

$\displaystyle u(x) = -1 + \frac{x^{2}}{2} + \frac{x^{4}}{24} + \frac{x^{6}}{240} + ...\ (3)$

... and the series (3) converges for any real [and complex...] x...

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
28
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
11
Views
3K
  • · Replies 35 ·
2
Replies
35
Views
7K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
6K