205.8.4.30. Int 24/(144x^2+1)^2 dx

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx
Click For Summary
SUMMARY

The integral I_{30} = \int \frac{24}{(144x^2+1)^2} \, dx can be solved using trigonometric substitution. The solution involves substituting 12x = \tan(\theta), leading to I_{30} = 2\int \cos^2(\theta) \, d\theta. The final result is I_{30} = \frac{12x}{(12x)^2+1} + \arctan(12x) + C. This method effectively utilizes the double-angle identity for cosine and back-substitution for the variable.

PREREQUISITES
  • Understanding of integral calculus and trigonometric identities
  • Familiarity with trigonometric substitution techniques
  • Knowledge of the double-angle identities for sine and cosine
  • Ability to perform back-substitution in integrals
NEXT STEPS
  • Study trigonometric substitution methods in integral calculus
  • Learn about the application of double-angle identities in integration
  • Explore advanced integration techniques, including reduction formulas
  • Practice solving integrals involving rational functions and trigonometric identities
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus and integral techniques, as well as educators looking for effective methods to teach integration strategies.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
206.8.4.30. Int 24/(144x^2+1)^2 dx

206.8.4.30
$\displaystyle
I_30=\int \frac{24}{(144x^2+1)^2}=
\arctan\left(12x\right)+\dfrac{12x}{144x^2+1}+C$

So $x=12\tan\left({u}\right) \therefore du=12\sec^2 (u)du$

By the answer assume a trig subst.
Didn't want to try reduction formula:
Continue or is there better?
 
Last edited:
Physics news on Phys.org
I would first write the integral as:

$$I_{30}=2\int\frac{12}{((12x)^2+1)^2}\,dx$$

Now, let:

$$12x=\tan(\theta)\implies 12\,dx=\sec^2(\theta)\,d\theta$$

and apply the Pythagorean identity:

$$\tan^2(\alpha)+1=\sec^2(\alpha)$$

and you now have:

$$I_{30}=2\int\frac{\sec^2(\theta)}{\sec^4(\theta)}\,d\theta=2\int\cos^2(\theta)\,d\theta=\int \cos(2\theta)+1\,d\theta$$

Now all that's left is to complete the integration and back-substitute for $\theta$. :)
 
205.8.4.30

After fixing typos and plagiarizing..

$$\displaystyle
I_{30}=\int \frac{24}{(144x^2+1)^2} \, dx =
\arctan\left(12x\right)+\dfrac{12x}{144x^2+1}+C$$
rewrte
$$\displaystyle
I_{30}=2\int \frac{12}{((12x)^2+1)^2} \, dx $$
trig subst
$$12x=\tan\left({\theta}\right)
\therefore 12dx=\sec^2 (\theta)d\theta$$
$$\displaystyle I_{30}=2\int\frac{\sec^2(\theta)}{\sec^4(\theta)}\,d\theta=2\int\cos^2(\theta)\,d\theta=\int \cos(2\theta)+1\,d\theta$$

back subst $\theta=\arctan{(12x)}$

How do you back subst this ??
Isn't it $\cos\left({2\theta}\right)-1$
 
A double-angle identity for cosine is:

$$\cos(2\alpha)=2\cos^2(\alpha)-1$$

Now, when you integrate, you will get:

$$I_{30}=\frac{1}{2}\sin(2\theta)+\theta+C$$

Apply the double-angle identity for sine, and various other identities:

$$I_{30}=\sin(\theta)\cos(\theta)+\theta+C=\tan(\theta)\cos^2(\theta)+\theta+C=\frac{\tan(\theta)}{\sec^2(\theta)}+\theta+C=\frac{\tan(\theta)}{\tan^2(\theta)+1}+\theta+C$$

Now, back-substitute for $\theta$:

$$I_{30}=\frac{12x}{(12x)^2+1}+\arctan(12x)+C$$
 
206.8.4.30
$$\displaystyle
I_{30}=\int \frac{24}{(144x^2+1)^2} \, dx =
\arctan\left(12x\right)+\dfrac{12x}{144x^2+1}+C$$
rewrte
$$\displaystyle
I_{30}=2\int \frac{12}{((12x)^2+1)^2} \, dx $$
trig subst
$$12x=\tan\left({\theta}\right)
\therefore 12dx=\sec^2 (\theta)d\theta$$
$$\displaystyle I_{30}=2\int\frac{\sec^2(\theta)}{\sec^4(\theta)}\,d\theta=2\int\cos^2(\theta)\,d\theta=\int \cos(2\theta)+1\,d\theta$$
$$\displaystyle I_{30}
=\sin(\theta)\cos(\theta)+\theta+C
=\tan(\theta)\cos^2(\theta)+\theta+C \\
=\frac{\tan(\theta)}{\sec^2(\theta)}+\theta+C
=\frac{\tan(\theta)}{\tan^2(\theta)+1}+\theta+C$$
back subst $\theta=\arctan{(12x)}$
$$\displaystyle I_{30}=\frac{12x}{(12x)^2+1}+\arctan(12x)+C$$
☕
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
953
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K