MHB 205.8.4.30. Int 24/(144x^2+1)^2 dx

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx
Click For Summary
The integral I_30, represented as ∫ 24/(144x^2+1)^2 dx, is solved using trigonometric substitution. By letting 12x = tan(θ), the integral is transformed into a more manageable form involving secant and cosine functions. The integration leads to expressions involving the double-angle identity for cosine, ultimately simplifying to I_30 = (12x)/(144x^2+1) + arctan(12x) + C. The discussion emphasizes the importance of back-substitution to arrive at the final answer. The method effectively illustrates the use of trigonometric identities in integral calculus.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
206.8.4.30. Int 24/(144x^2+1)^2 dx

206.8.4.30
$\displaystyle
I_30=\int \frac{24}{(144x^2+1)^2}=
\arctan\left(12x\right)+\dfrac{12x}{144x^2+1}+C$

So $x=12\tan\left({u}\right) \therefore du=12\sec^2 (u)du$

By the answer assume a trig subst.
Didn't want to try reduction formula:
Continue or is there better?
 
Last edited:
Physics news on Phys.org
I would first write the integral as:

$$I_{30}=2\int\frac{12}{((12x)^2+1)^2}\,dx$$

Now, let:

$$12x=\tan(\theta)\implies 12\,dx=\sec^2(\theta)\,d\theta$$

and apply the Pythagorean identity:

$$\tan^2(\alpha)+1=\sec^2(\alpha)$$

and you now have:

$$I_{30}=2\int\frac{\sec^2(\theta)}{\sec^4(\theta)}\,d\theta=2\int\cos^2(\theta)\,d\theta=\int \cos(2\theta)+1\,d\theta$$

Now all that's left is to complete the integration and back-substitute for $\theta$. :)
 
205.8.4.30

After fixing typos and plagiarizing..

$$\displaystyle
I_{30}=\int \frac{24}{(144x^2+1)^2} \, dx =
\arctan\left(12x\right)+\dfrac{12x}{144x^2+1}+C$$
rewrte
$$\displaystyle
I_{30}=2\int \frac{12}{((12x)^2+1)^2} \, dx $$
trig subst
$$12x=\tan\left({\theta}\right)
\therefore 12dx=\sec^2 (\theta)d\theta$$
$$\displaystyle I_{30}=2\int\frac{\sec^2(\theta)}{\sec^4(\theta)}\,d\theta=2\int\cos^2(\theta)\,d\theta=\int \cos(2\theta)+1\,d\theta$$

back subst $\theta=\arctan{(12x)}$

How do you back subst this ??
Isn't it $\cos\left({2\theta}\right)-1$
 
A double-angle identity for cosine is:

$$\cos(2\alpha)=2\cos^2(\alpha)-1$$

Now, when you integrate, you will get:

$$I_{30}=\frac{1}{2}\sin(2\theta)+\theta+C$$

Apply the double-angle identity for sine, and various other identities:

$$I_{30}=\sin(\theta)\cos(\theta)+\theta+C=\tan(\theta)\cos^2(\theta)+\theta+C=\frac{\tan(\theta)}{\sec^2(\theta)}+\theta+C=\frac{\tan(\theta)}{\tan^2(\theta)+1}+\theta+C$$

Now, back-substitute for $\theta$:

$$I_{30}=\frac{12x}{(12x)^2+1}+\arctan(12x)+C$$
 
206.8.4.30
$$\displaystyle
I_{30}=\int \frac{24}{(144x^2+1)^2} \, dx =
\arctan\left(12x\right)+\dfrac{12x}{144x^2+1}+C$$
rewrte
$$\displaystyle
I_{30}=2\int \frac{12}{((12x)^2+1)^2} \, dx $$
trig subst
$$12x=\tan\left({\theta}\right)
\therefore 12dx=\sec^2 (\theta)d\theta$$
$$\displaystyle I_{30}=2\int\frac{\sec^2(\theta)}{\sec^4(\theta)}\,d\theta=2\int\cos^2(\theta)\,d\theta=\int \cos(2\theta)+1\,d\theta$$
$$\displaystyle I_{30}
=\sin(\theta)\cos(\theta)+\theta+C
=\tan(\theta)\cos^2(\theta)+\theta+C \\
=\frac{\tan(\theta)}{\sec^2(\theta)}+\theta+C
=\frac{\tan(\theta)}{\tan^2(\theta)+1}+\theta+C$$
back subst $\theta=\arctan{(12x)}$
$$\displaystyle I_{30}=\frac{12x}{(12x)^2+1}+\arctan(12x)+C$$
☕
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
895
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K