206.08.04.59 int completing the square

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Square
Click For Summary
SUMMARY

The integral I41 = ∫ (1/√(x² + 2x + 37)) dx is solved by completing the square, transforming the expression into ∫ (1/√(u² + 6²)) du through the substitution u = x + 1. The final result is expressed as I41 = ln|(x + 1) + √((x + 1)² + 36)|. An alternative representation using hyperbolic functions is also provided: I = arsinh((x + 1)/6) + C, highlighting the importance of including the constant of integration.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with completing the square technique
  • Knowledge of u-substitution in integration
  • Basic concepts of hyperbolic functions
NEXT STEPS
  • Study advanced integration techniques, including hyperbolic substitutions
  • Explore the properties and applications of logarithmic integrals
  • Learn about the relationship between exponential and hyperbolic functions
  • Practice solving integrals involving square roots and completing the square
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus, integral equations, and advanced algebra techniques.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{206.08.04.59}$
$\textrm{Solve by completing the square}$

\begin{align*}\displaystyle
I_{41}&=\int \frac{1}{\sqrt[]{x^2+2x+37}} \, dx\\
\end{align*}
$\textit{from the radical we have}$
\begin{align*}\displaystyle
x^2+2x+37&=x^2+2x+1 +37-1\\
&=(x+1)^2 + 36
\end{align*}
$\textit{U substitution we have}$
\begin{align*}\displaystyle
u=x+1 \therefore du=dx\\
\end{align*}
$\textit{Thus the Integral now is:}$
\begin{align*}\displaystyle
&=\int \frac{1}{\sqrt{u^2 + 6^2}} \, du\\
\end{align*}
$\textit{then $a=6$ so from}$
\begin{align*}\displaystyle
\int\frac{1}{\sqrt{u^2 + a^2}}du&=\ln{|u+\sqrt{u^2+a^2}|}
\end{align*}
$\textit{finally}$
\begin{align*}\displaystyle
I_{41}&=\ln{\left|(x+1)+\sqrt{(x+1)^2+36}\right|}\\
\end{align*}

I hope anyway
 
Physics news on Phys.org
The only thing I see missing is the constant of integration. Note that by using a hyperbolic trig. substitution, you could also write:

$$I=\arsinh\left(\frac{x+1}{6}\right)+C$$
 
yeah
that would be better!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K