206.11.3.27 Tayor series 3 terms

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Series Terms
Click For Summary
SUMMARY

The forum discussion focuses on deriving the first four nonzero terms of the Taylor series for the function \( f(x) = 6^x \) at the point \( a = 1 \). The calculated terms include \( f^0(1) = 6 \), \( f^1(1) = 6\ln(6) \), \( f^2(1) = 6\ln^2(6) \), and \( f^3(1) = 6\ln^3(6) \). The resulting Taylor series approximation is \( f(x) \approx 6 + 6\ln(6)(x-1) + 3\ln^2(6)(x-1)^2 + \ln^3(6)(x-1)^3 \). The discussion emphasizes the importance of correctly applying logarithmic properties in the calculations.

PREREQUISITES
  • Understanding of Taylor series expansion
  • Familiarity with logarithmic functions, specifically natural logarithms
  • Basic calculus concepts, including derivatives
  • Knowledge of function approximation techniques
NEXT STEPS
  • Study the properties of Taylor series and their convergence
  • Learn about the application of Taylor series in function approximation
  • Explore the relationship between logarithmic differentiation and Taylor series
  • Investigate error analysis in Taylor series approximations
USEFUL FOR

Mathematicians, students studying calculus, educators teaching Taylor series, and anyone interested in advanced function approximation techniques.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{a. Find the first four nonzero terms
of the Taylor series $a=1$}$
\begin{align}
\displaystyle
f^0(x)&=6^{x} &\therefore \ \ f^0(a)&= 6 \\
f^1(x)&=6^{x}\ln(6) &\therefore \ \ f^1(a)&= 6\ln(6) \\
f^2(x)&={6^{x}\ln(6)^2} &\therefore \ \ f^2(a)&= {12\ln(6)} \\
f^3(x)&={6^{x}\ln(6)^3} &\therefore \ \ f^3(a)&= {18\ln(6)} \\
\end{align}
$\textsf{so then}$
\begin{align}
\displaystyle
f\left(x\right)&\approx\frac{6}{0!}(x-1)^{0}
+\frac{6ln(6)}{1!}(x-1)^{1}
+\frac{12\ln(6)}{2!}(x-1)^{2}
+\frac{18\ln(6)}{3!}(x-1)^{3} \\
f\left(x\right)&\approx
6+6ln(6)(x-1)+6\ln(6)(x-1)^{2}+3\ln(6)(x-1)^{3}
\end{align}

$\textit{suggestions?}$
☕
 
Physics news on Phys.org
karush said:
$\textsf{a. Find the first four nonzero terms
of the Taylor series $a=1$}$
\begin{align}
\displaystyle
f^0(x)&=6^{x} &\therefore \ \ f^0(a)&= 6 \\
f^1(x)&=6^{x}\ln(6) &\therefore \ \ f^1(a)&= 6\ln(6) \\
f^2(x)&={6^{x}\ln(6)^2} &\therefore \ \ f^2(a)&= {12\ln(6)} \\
f^3(x)&={6^{x}\ln(6)^3} &\therefore \ \ f^3(a)&= {18\ln(6)} \\
\end{align}
$\textsf{so then}$
\begin{align}
\displaystyle
f\left(x\right)&\approx\frac{6}{0!}(x-1)^{0}
+\frac{6ln(6)}{1!}(x-1)^{1}
+\frac{12\ln(6)}{2!}(x-1)^{2}
+\frac{18\ln(6)}{3!}(x-1)^{3} \\
f\left(x\right)&\approx
6+6ln(6)(x-1)+6\ln(6)(x-1)^{2}+3\ln(6)(x-1)^{3}
\end{align}

$\textit{suggestions?}$
☕
Note that f^{(2)} (x) = 6^x \cdot (ln(6))^2, so f^{(2)}(1) = 6 \cdot (ln(6))^2. All of your coefficients will be of the form f^{(6)} (1) = 6 \cdot (ln(6))^n.

-Dan

Addendum: I think I see what's happened here. (ln(6))^2 \neq 2 \cdot ln(6). You are thinking of ln \left ( 6^2 \right ). They are not the same.
 
$\textsf{a. Find the first four nonzero terms
of the Taylor series $a=1$}$
\begin{align}
\displaystyle
f^0(x)&=6^{x} &\therefore \ \ f^0(a)&= 6 \\
f^1(x)&=6^{x}\ln(6) &\therefore \ \ f^1(a)&= 6\ln(6) \\
f^2(x)&={6^{x}\ln^2(6)} &\therefore \ \ f^2(a)&= {6 \ln^2(6)} \\
f^3(x)&={6^{x}\ln^3(6)} &\therefore \ \ f^3(a)&= {6 \ln^3(6)} \\
\end{align}
$\textsf{so then}$
\begin{align}
\displaystyle
f\left(x\right)&\approx\frac{6}{0!}(x-1)^{0}
+\frac{6ln(6)}{1!}(x-1)^{1}
+\frac{6\ln^2(6)}{2!}(x-1)^{2}
+\frac{6\ln^3 (6)}{3!}(x-1)^{3} \\
f\left(x\right)&\approx
6+6ln(6)(x-1)+3\ln^2 (6)(x-1)^{2}+\ln^3 (6)(x-1)^{3}
\end{align}
$\textit{hope this is it ... so hard to see errors}$
 
Last edited:
karush said:
$\textsf{a. Find the first four nonzero terms
of the Taylor series $a=1$}$
\begin{align}
\displaystyle
f^0(x)&=6^{x} &\therefore \ \ f^0(a)&= 6 \\
f^1(x)&=6^{x}\ln(6) &\therefore \ \ f^1(a)&= 6\ln(6) \\
f^2(x)&={6^{x}\ln^2(6)} &\therefore \ \ f^2(a)&= {6 \ln^2(6)} \\
f^3(x)&={6^{x}\ln^3(6)} &\therefore \ \ f^3(a)&= {6 \ln^3(6)} \\
\end{align}
$\textsf{so then}$
\begin{align}
\displaystyle
f\left(x\right)&\approx\frac{6}{0!}(x-1)^{0}
+\frac{6ln(6)}{1!}(x-1)^{1}
+\frac{6\ln^2(6)}{2!}(x-1)^{2}
+\frac{6\ln^3 (6)}{3!}(x-1)^{3} \\
f\left(x\right)&\approx
6+6ln(6)(x-1)+3\ln^2 (6)(x-1)^{2}+\ln^3 (6)(x-1)^{3}
\end{align}
$\textit{hope this is it ... so hard to see errors}$
Yup! And, of course, you can verify it to a degree...pick some x's close to 1 and compare the function with the approximation. They should be reasonably close.

-Dan
 
I'll try two more_ already getting burnt on em...(Doh)
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K