206.11.3.39 Find the first four nonzero terms of the Taylor series

Click For Summary
SUMMARY

The discussion focuses on finding the first four nonzero terms of the Taylor series for the function \( f(x) = (1+x)^{-2} \) at \( a=0 \). The calculated terms are \( 1 - 2x + 3x^2 - 4x^3 \). Additionally, the approximation of \( (1 + 0.14)^{-2} \) is discussed, clarifying that \( x \) should be set to \( 0.14 \) rather than \( 1.14 \). The final approximation yields \( f(0.14) \approx 0.77 \).

PREREQUISITES
  • Understanding of Taylor series expansion
  • Familiarity with calculus, specifically derivatives
  • Knowledge of the function \( f(x) = (1+x)^{-2} \)
  • Basic algebra for evaluating polynomial expressions
NEXT STEPS
  • Study the derivation of Taylor series for different functions
  • Learn about convergence criteria for Taylor series
  • Explore applications of Taylor series in numerical methods
  • Investigate the use of graphing calculators for polynomial approximations
USEFUL FOR

Students and educators in calculus, mathematicians interested in series expansions, and anyone needing to approximate functions using Taylor series.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{206.11.3.39}$
$\textsf{a. Find the first four nonzero terms
of the Taylor series $a=0$}$

\begin{align}
\displaystyle
f^0(x)&=(1+x)^{-2} &\therefore \ \ f^0(a)&= 1 \\
f^1(x)&=\frac{-2}{(x+1)^3} &\therefore \ \ f^1(a)&= -2 \\
f^2(x)&=\frac{6}{(x+1)^4} &\therefore \ \ f^2(a)&= 6 \\
f^3(x)&=\frac{-24}{(x+1)^5} &\therefore \ \ f^3(a)&= -24 \\
\end{align}
$\textsf{so then}$
\begin{align}
\displaystyle
f\left(x\right)&\approx\frac{1}{0!}x^{0}
+\frac{-2}{1!}x^{1}+\frac{6}{2!}x^{2}+\frac{-24}{3!}x^{3} \\
f\left(x\right)&\approx 1-2x+3x^{2}-4x^{3}
\end{align}

$\textsf{b. approximate $\frac{1 }{1,14^{-2}}$ }\\$

$\textsf{not sure where this is plugged in??}$
 
Last edited:
Physics news on Phys.org
karush said:
$\textsf{b. approximate $\frac{1 }{1,14^{-2}}$ }\\$
At a guess are you asking about [math](1 + 0.14)^{-2}[/math] ?

In that case you are looking at x = 0.14

-Dan
 
ok I see..
was going to plug the whole thing in..

but if $x=1.14$ then

$$f(x)\approx 1-2(1.14)+3(1.14)^2-4(1.14)^3\approx 0.77$$
 
karush said:
ok I see..
was going to plug the whole thing in..

but if $x=1.14$ then

$$f(x)\approx 1-2(1.14)+3(1.14)^2-4(1.14)^3\approx 0.77$$
Look at your problem more carefully. You have the Taylor series for [math](1 + x)^{-2}[/math] for x close to 0. You want to approximate [math](1 + 0.14)^{-2}[/math]. Comparing the two expressions you can see that we want x = 0.14, not 1.14.

-Dan
 
$\textsf{Ok i put $0.14$ in the TI so $f(x)\approx 0.77$ but didn't in the post.}$
☕
 
Last edited:
$\displaystyle \begin{align*} f(x) &= \frac{1}{\left( 1 + x \right) ^2} \end{align*}$

Notice that $\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x}\,\left( -\frac{1}{1 + x} \right) = \frac{1}{\left( 1 + x \right) ^2} \end{align*}$ and

$\displaystyle \begin{align*} -\frac{1}{1 + x} &= -\frac{1}{1 - \left( -x \right) } \\ &= -\sum_{n = 0}^{\infty}{ \left( -x \right) ^n } \textrm{ for } \left| -x \right| < 1 \implies \left| x \right| < 1 \\ &= -\sum_{n = 0}^{\infty}{ \left( -1 \right) ^n \, x^n } \\ &= \sum_{n = 0}^{\infty}{ \left( -1 \right) ^{n + 1}\,x^n } \\ \\ \frac{\mathrm{d}}{\mathrm{d}x}\,\left( -\frac{1}{1 + x} \right) &= \frac{\mathrm{d}}{\mathrm{d}x} \,\left[ \sum_{n = 0}^{\infty}{ \left( -1 \right) ^{n + 1}\,x^n } \right] \\ \frac{1}{\left( 1 + x \right)^2} &= \sum_{n = 0}^{\infty}{ \left( -1 \right) ^{n+ 1}\,n\,x^{n - 1} } \\ &= 0 + 1 - 2\,x + 3\,x^2 - 4\,x^3 + \dots \textrm{ for } \left| x \right| < 1 \end{align*}$

so the first four nonzero terms are $\displaystyle \begin{align*} 1 - 2\,x + 3\,x^2 - 4\,x^3 \end{align*}$.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K