MHB 206.11.3.39 Find the first four nonzero terms of the Taylor series

Click For Summary
The discussion focuses on finding the first four nonzero terms of the Taylor series for the function \( f(x) = (1+x)^{-2} \) at \( a = 0 \). The calculated terms are \( 1 - 2x + 3x^2 - 4x^3 \). Additionally, there is a query about approximating \( \frac{1}{1.14^{-2}} \), which is clarified to involve using \( x = 0.14 \) instead of \( x = 1.14 \). The approximation using the Taylor series yields \( f(0.14) \approx 0.77 \). This highlights the importance of correctly identifying the value of \( x \) for accurate approximations.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{206.11.3.39}$
$\textsf{a. Find the first four nonzero terms
of the Taylor series $a=0$}$

\begin{align}
\displaystyle
f^0(x)&=(1+x)^{-2} &\therefore \ \ f^0(a)&= 1 \\
f^1(x)&=\frac{-2}{(x+1)^3} &\therefore \ \ f^1(a)&= -2 \\
f^2(x)&=\frac{6}{(x+1)^4} &\therefore \ \ f^2(a)&= 6 \\
f^3(x)&=\frac{-24}{(x+1)^5} &\therefore \ \ f^3(a)&= -24 \\
\end{align}
$\textsf{so then}$
\begin{align}
\displaystyle
f\left(x\right)&\approx\frac{1}{0!}x^{0}
+\frac{-2}{1!}x^{1}+\frac{6}{2!}x^{2}+\frac{-24}{3!}x^{3} \\
f\left(x\right)&\approx 1-2x+3x^{2}-4x^{3}
\end{align}

$\textsf{b. approximate $\frac{1 }{1,14^{-2}}$ }\\$

$\textsf{not sure where this is plugged in??}$
 
Last edited:
Physics news on Phys.org
karush said:
$\textsf{b. approximate $\frac{1 }{1,14^{-2}}$ }\\$
At a guess are you asking about [math](1 + 0.14)^{-2}[/math] ?

In that case you are looking at x = 0.14

-Dan
 
ok I see..
was going to plug the whole thing in..

but if $x=1.14$ then

$$f(x)\approx 1-2(1.14)+3(1.14)^2-4(1.14)^3\approx 0.77$$
 
karush said:
ok I see..
was going to plug the whole thing in..

but if $x=1.14$ then

$$f(x)\approx 1-2(1.14)+3(1.14)^2-4(1.14)^3\approx 0.77$$
Look at your problem more carefully. You have the Taylor series for [math](1 + x)^{-2}[/math] for x close to 0. You want to approximate [math](1 + 0.14)^{-2}[/math]. Comparing the two expressions you can see that we want x = 0.14, not 1.14.

-Dan
 
$\textsf{Ok i put $0.14$ in the TI so $f(x)\approx 0.77$ but didn't in the post.}$
☕
 
Last edited:
$\displaystyle \begin{align*} f(x) &= \frac{1}{\left( 1 + x \right) ^2} \end{align*}$

Notice that $\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x}\,\left( -\frac{1}{1 + x} \right) = \frac{1}{\left( 1 + x \right) ^2} \end{align*}$ and

$\displaystyle \begin{align*} -\frac{1}{1 + x} &= -\frac{1}{1 - \left( -x \right) } \\ &= -\sum_{n = 0}^{\infty}{ \left( -x \right) ^n } \textrm{ for } \left| -x \right| < 1 \implies \left| x \right| < 1 \\ &= -\sum_{n = 0}^{\infty}{ \left( -1 \right) ^n \, x^n } \\ &= \sum_{n = 0}^{\infty}{ \left( -1 \right) ^{n + 1}\,x^n } \\ \\ \frac{\mathrm{d}}{\mathrm{d}x}\,\left( -\frac{1}{1 + x} \right) &= \frac{\mathrm{d}}{\mathrm{d}x} \,\left[ \sum_{n = 0}^{\infty}{ \left( -1 \right) ^{n + 1}\,x^n } \right] \\ \frac{1}{\left( 1 + x \right)^2} &= \sum_{n = 0}^{\infty}{ \left( -1 \right) ^{n+ 1}\,n\,x^{n - 1} } \\ &= 0 + 1 - 2\,x + 3\,x^2 - 4\,x^3 + \dots \textrm{ for } \left| x \right| < 1 \end{align*}$

so the first four nonzero terms are $\displaystyle \begin{align*} 1 - 2\,x + 3\,x^2 - 4\,x^3 \end{align*}$.
 

Similar threads

Replies
4
Views
2K
Replies
2
Views
2K
Replies
7
Views
2K
Replies
3
Views
2K
Replies
3
Views
2K