206.8.4.35 integral complete the square

Click For Summary

Discussion Overview

The discussion revolves around the integral $$I_{35}=\int \frac{1}{\sqrt{x^2+2x+65}} \, dx$$ and the methods for solving it, specifically focusing on completing the square and using trigonometric substitution. Participants explore various approaches and substitutions, while addressing mistakes and clarifying integration steps.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant suggests completing the square for the expression $$x^2+2x+65$$ and proposes a substitution involving $$u=\arctan\left(\frac{x+1}{8}\right)$$.
  • Another participant points out an error in the integration step after substitution, indicating that the integral should yield $$I_{35}=\int \sec(u)\,du$$.
  • A different participant provides an alternative integration result for $$\int \sec(u)\,du$$, suggesting it leads to $$\ln\left|\sec(u)+\tan(u)\right|+C$$.
  • One participant expresses confusion about back substitution into the integral after reaching an expression involving $$\sec(u)$$.
  • Another participant discusses the equivalence of different forms of the integral results, questioning the validity of a previous integration step.
  • Several participants update their previous posts to clarify their calculations and ensure correctness, including suggestions for using absolute values in logarithmic expressions.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the correct integration method or the final form of the integral. Multiple competing views and approaches remain throughout the discussion.

Contextual Notes

There are unresolved issues regarding the correctness of integration steps, the handling of logarithmic expressions, and the implications of using absolute values in the context of logarithms.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{206.8.4.35} \\
\text{given }$
$$\displaystyle
I_{35}=\int \frac{1}{\sqrt{x^2+2x+65}} \, dx = $$
$\text{complete the square} \\
x^2+2x+65 \implies x^2+2x+64+1
\implies \left[x+1\right]^2+8^2 \\$
$\text{u substitution } \\
\displaystyle x+1= 8 \tan\left({u}\right)
\therefore du=8\sec{u} \, du \\
u=\arctan{\left(\frac{x+1}{8}\right)}$
$$I_{35}=\int\frac{2\sec^2{u}}{8\sec{u}}\, du
= \frac{1}{4}u+C$$
$\text{back substitution } \\
I_{35}=\frac{1}{4} \arctan{\left(\frac{x+1}{8}\right)} + C$

mistake somewhere!
 
Last edited:
Physics news on Phys.org
After your substitution, you should get:

$$I_{35}=\int \sec(u)\,du$$
 
$\tiny{206.8.4.35} \\
\text{given }$
$$\displaystyle
I_{35}=\int \frac{1}{\sqrt{x^2+2x+65}} \, dx = $$
$\text{complete the square}$
$$ \\
x^2+2x+65 \implies x^2+2x+64+1
\implies \left[x+1\right]^2+8^2 \\$$
$\text{u substitution }$
$$
\displaystyle x+1= 8 \tan\left({u}\right)
\therefore du=8\sec^2{u} \, du \\
u=\arctan{\left(\frac{x+1}{8}\right)}$$
$$I_{35}=\int\frac{8\sec^2{u}}{8\sec{u}}\, du
\implies \int \sec{u} \, du =- \ln\left({\cos{u}}\right)-\ln\left({\sin\left({u}\right)-1}\right)+C$$
$\text{how do you back substitute into this } $
$$I_{35}=$$
 
Last edited:
Your integration is incorrect...I would suggest using this:

$$I_{35}=\int \sec(u)\,du=\ln\left|\sec(u)+\tan(u)\right|+C$$

And then you can use the fact that if:

$$\tan(\theta)=\frac{a}{b}$$

then:

$$\sec(u)=\frac{\sqrt{a^2+b^2}}{b}$$
 
$$u= \arctan\left(\frac{x+1}{8}\right)$$
Then
$$\tan\left({u}\right)=\frac{x+1}{8}=\frac{a}{b}$$
$$\displaystyle \sec(u)=\frac{\sqrt{a^2+b^2}}{b}=
\frac{\sqrt{(x+1)^2+8^2}}{8}$$
So then
$$I_{35}=\ln{\left[\frac{\sqrt{(x+1)^2+8^2}}{8}
+\frac{x+1}{8}\right]}+C$$
Hopefully. ...bar simplification
 
Last edited:
karush said:
Ok but my TI returned
$$\int\sec{u} \, du
= \ln\left[{\frac{{-\cos\left({u}\right)}}
{\sin\left({u}\right)-1}}\right]+C$$
which may be the same thing

$$\frac{-\cos(u)}{\sin(u)-1}=\frac{\cos(u)}{1-\sin(u)}=\frac{\cos(u)}{1-\sin(u)}\cdot\frac{1+\sin(u)}{1+\sin(u)}=\frac{1+\sin(u)}{\cos(u)}=\sec(u)+\tan(u)$$

What you posted before though was not equivalent:

$$\ln\left|\frac{\cos(u)}{1-\sin(u)}\right|\ne-\ln\left|\cos(u)\right|-\ln\left|\sin(u)-1\right|$$
 
I updated post 5 hope its correct
 
karush said:
I updated post 5 hope its correct

Looks good, except use absolute value instead of brackets (since the log argument could be negative otherwise). Then combine terms, and then use a property of logs and the fact that a constant added/subtracted to/from an arbitrary constant is still an arbitrary constant. :D
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
976
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K