206.8.4.35 integral complete the square

Click For Summary
SUMMARY

The integral \( I_{35} = \int \frac{1}{\sqrt{x^2+2x+65}} \, dx \) can be solved by completing the square and using a trigonometric substitution. The expression simplifies to \( \left[x+1\right]^2 + 8^2 \), leading to the substitution \( x + 1 = 8 \tan(u) \). The correct integral evaluation yields \( I_{35} = \ln\left|\sec(u) + \tan(u)\right| + C \), with back substitution resulting in \( I_{35} = \ln\left[\frac{\sqrt{(x+1)^2 + 8^2}}{8} + \frac{x+1}{8}\right] + C \). The discussion emphasizes the importance of using absolute values in logarithmic expressions.

PREREQUISITES
  • Understanding of integral calculus and trigonometric identities
  • Familiarity with completing the square technique
  • Knowledge of u-substitution in integration
  • Proficiency in logarithmic properties and manipulations
NEXT STEPS
  • Study trigonometric substitutions in integral calculus
  • Learn about the properties of logarithms and their applications in calculus
  • Explore advanced integration techniques, including integration by parts
  • Practice solving integrals involving square roots and rational functions
USEFUL FOR

Students and educators in mathematics, particularly those focusing on calculus, integral evaluation, and trigonometric functions. This discussion is also beneficial for anyone seeking to enhance their problem-solving skills in calculus.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{206.8.4.35} \\
\text{given }$
$$\displaystyle
I_{35}=\int \frac{1}{\sqrt{x^2+2x+65}} \, dx = $$
$\text{complete the square} \\
x^2+2x+65 \implies x^2+2x+64+1
\implies \left[x+1\right]^2+8^2 \\$
$\text{u substitution } \\
\displaystyle x+1= 8 \tan\left({u}\right)
\therefore du=8\sec{u} \, du \\
u=\arctan{\left(\frac{x+1}{8}\right)}$
$$I_{35}=\int\frac{2\sec^2{u}}{8\sec{u}}\, du
= \frac{1}{4}u+C$$
$\text{back substitution } \\
I_{35}=\frac{1}{4} \arctan{\left(\frac{x+1}{8}\right)} + C$

mistake somewhere!
 
Last edited:
Physics news on Phys.org
After your substitution, you should get:

$$I_{35}=\int \sec(u)\,du$$
 
$\tiny{206.8.4.35} \\
\text{given }$
$$\displaystyle
I_{35}=\int \frac{1}{\sqrt{x^2+2x+65}} \, dx = $$
$\text{complete the square}$
$$ \\
x^2+2x+65 \implies x^2+2x+64+1
\implies \left[x+1\right]^2+8^2 \\$$
$\text{u substitution }$
$$
\displaystyle x+1= 8 \tan\left({u}\right)
\therefore du=8\sec^2{u} \, du \\
u=\arctan{\left(\frac{x+1}{8}\right)}$$
$$I_{35}=\int\frac{8\sec^2{u}}{8\sec{u}}\, du
\implies \int \sec{u} \, du =- \ln\left({\cos{u}}\right)-\ln\left({\sin\left({u}\right)-1}\right)+C$$
$\text{how do you back substitute into this } $
$$I_{35}=$$
 
Last edited:
Your integration is incorrect...I would suggest using this:

$$I_{35}=\int \sec(u)\,du=\ln\left|\sec(u)+\tan(u)\right|+C$$

And then you can use the fact that if:

$$\tan(\theta)=\frac{a}{b}$$

then:

$$\sec(u)=\frac{\sqrt{a^2+b^2}}{b}$$
 
$$u= \arctan\left(\frac{x+1}{8}\right)$$
Then
$$\tan\left({u}\right)=\frac{x+1}{8}=\frac{a}{b}$$
$$\displaystyle \sec(u)=\frac{\sqrt{a^2+b^2}}{b}=
\frac{\sqrt{(x+1)^2+8^2}}{8}$$
So then
$$I_{35}=\ln{\left[\frac{\sqrt{(x+1)^2+8^2}}{8}
+\frac{x+1}{8}\right]}+C$$
Hopefully. ...bar simplification
 
Last edited:
karush said:
Ok but my TI returned
$$\int\sec{u} \, du
= \ln\left[{\frac{{-\cos\left({u}\right)}}
{\sin\left({u}\right)-1}}\right]+C$$
which may be the same thing

$$\frac{-\cos(u)}{\sin(u)-1}=\frac{\cos(u)}{1-\sin(u)}=\frac{\cos(u)}{1-\sin(u)}\cdot\frac{1+\sin(u)}{1+\sin(u)}=\frac{1+\sin(u)}{\cos(u)}=\sec(u)+\tan(u)$$

What you posted before though was not equivalent:

$$\ln\left|\frac{\cos(u)}{1-\sin(u)}\right|\ne-\ln\left|\cos(u)\right|-\ln\left|\sin(u)-1\right|$$
 
I updated post 5 hope its correct
 
karush said:
I updated post 5 hope its correct

Looks good, except use absolute value instead of brackets (since the log argument could be negative otherwise). Then combine terms, and then use a property of logs and the fact that a constant added/subtracted to/from an arbitrary constant is still an arbitrary constant. :D
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
953
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K