MHB 206.8.4.61 int (x^2+2x+4)/(sqrt(x^2-4x)) dx

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx
Click For Summary
The integral I_{61} = ∫(x^2 + 2x + 4)/√(x^2 - 4x) dx can be solved using hyperbolic functions after completing the square and applying a u-substitution. The solution involves transforming the variable to x - 2 = 2cosh(z) and simplifying the integral to yield a result expressed in terms of sinh and cosh functions. The final answer combines logarithmic and polynomial terms, demonstrating the utility of hyperbolic identities in integration. The discussion highlights the effectiveness of hyperbolic functions in solving complex integrals, with participants sharing insights and alternative methods. Overall, the thread emphasizes the importance of understanding hyperbolic functions for advanced calculus problems.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{206.8.4.61 \ calculated \ by \ Ti-nspire \ cx \ cas}$
$$I_{61}=\displaystyle
\int\frac{x^2+2x+4}{\sqrt{x^2-4x}} \, dx
=14\ln\left[{\sqrt{{x}^{2}-4x}}+x-2\right]
+\left[\frac{x}{2}+5\right]
\sqrt{{x}^{2}-4x}+C$$
$\text{complete the square}$
$$x^2-4x \implies \left[x-2\right]^2-4$$
$\text{u substitution }$
$$u=x-2 \therefore du=dx \ \ x=u+2 $$
$$I_{61}=\displaystyle
\int\frac{u^2+6u+12}{\sqrt{u^2-4}} \, du$$
 
Last edited:
Physics news on Phys.org
The solution I have involves hyperbolic functions. I'm going to post it in its entirety so you may familiarise yourself with hyperbolic functions.

$$\int\frac{x^2+2x+4}{\sqrt{x^2-4x}}\,\mathbf dx=\int\frac{x^2+2x+4}{\sqrt{(x-2)^2-4}}\,\mathbf dx$$

$$x-2=2\cosh(z),\quad x=2\cosh(z)+2,\quad z=\arcosh\left(\frac{x-2}{2}\right),$$

$$\mathbf dx=2\sinh(z)\,\mathbf dz$$

$$\int\frac{x^2+2x+4}{\sqrt{(x-2)^2-4}}\,\mathbf dx=\int(2\cosh(z)+2)^2+4\cosh(z)+8\,\mathbf dz$$

$$=\sinh(2z)+12\sinh(z)+14z+C$$

$$=\sqrt{x^2-4x}\left(\frac{x}{2}+5\right)+14\ln\left|x-2+\sqrt{x^2-4x}\right|+C$$

Identities used:

$$\cosh^2(z)-1=\sinh^2(z)$$

$$\cosh^2(z)=\frac{\cosh(2z)+1}{2}$$

$$\sinh(2z)=2\sinh(z)\cosh(z)$$

$$\sinh(\arcosh(z))=\sqrt{z^2-1}$$

$$\arcosh(z)=\ln|z+\sqrt{z^2-1}|$$

Also,

$$\frac{\mathbf d}{\mathbf dz}\sinh(z)=\cosh(z)$$

$$\frac{\mathbf d}{\mathbf dz}\cosh(z)=\sinh(z)$$

Letting Wikipedia do most of the 'work',

hyperbolic function

inverse hyperbolic function

If you have any questions please post. :)
 
Thank you, that was very helpful
Saw some other solutions to this but this was far better
You really gave a very concise and comprehensive way to do it

I sent a croped image to a friend and he wanted to know where it came from. Malaho
 

Similar threads

Replies
5
Views
1K
Replies
8
Views
2K
Replies
6
Views
3K
Replies
6
Views
2K
Replies
6
Views
2K
Replies
3
Views
2K
Replies
7
Views
2K
Replies
2
Views
1K