206.8.4.61 int (x^2+2x+4)/(sqrt(x^2-4x)) dx

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx
Click For Summary
SUMMARY

The integral $$I_{61}=\displaystyle \int\frac{x^2+2x+4}{\sqrt{x^2-4x}} \, dx$$ is solved using hyperbolic functions, yielding the result $$I_{61}=14\ln\left[{\sqrt{{x}^{2}-4x}}+x-2\right]+\left[\frac{x}{2}+5\right]\sqrt{{x}^{2}-4x}+C$$. The solution involves completing the square and a substitution with $$u=x-2$$, transforming the integral into a form suitable for hyperbolic function techniques. Key identities such as $$\cosh^2(z)-1=\sinh^2(z)$$ and $$\sinh(2z)=2\sinh(z)\cosh(z)$$ are utilized to derive the final expression.

PREREQUISITES
  • Understanding of integral calculus, specifically integration techniques.
  • Familiarity with hyperbolic functions and their properties.
  • Knowledge of substitution methods in integration.
  • Ability to complete the square in quadratic expressions.
NEXT STEPS
  • Study hyperbolic functions and their applications in calculus.
  • Learn advanced integration techniques, including integration by substitution.
  • Explore the properties and identities of hyperbolic functions in detail.
  • Practice solving integrals involving square roots and rational functions.
USEFUL FOR

Mathematics students, calculus instructors, and anyone interested in advanced integration techniques, particularly those involving hyperbolic functions.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{206.8.4.61 \ calculated \ by \ Ti-nspire \ cx \ cas}$
$$I_{61}=\displaystyle
\int\frac{x^2+2x+4}{\sqrt{x^2-4x}} \, dx
=14\ln\left[{\sqrt{{x}^{2}-4x}}+x-2\right]
+\left[\frac{x}{2}+5\right]
\sqrt{{x}^{2}-4x}+C$$
$\text{complete the square}$
$$x^2-4x \implies \left[x-2\right]^2-4$$
$\text{u substitution }$
$$u=x-2 \therefore du=dx \ \ x=u+2 $$
$$I_{61}=\displaystyle
\int\frac{u^2+6u+12}{\sqrt{u^2-4}} \, du$$
 
Last edited:
Physics news on Phys.org
The solution I have involves hyperbolic functions. I'm going to post it in its entirety so you may familiarise yourself with hyperbolic functions.

$$\int\frac{x^2+2x+4}{\sqrt{x^2-4x}}\,\mathbf dx=\int\frac{x^2+2x+4}{\sqrt{(x-2)^2-4}}\,\mathbf dx$$

$$x-2=2\cosh(z),\quad x=2\cosh(z)+2,\quad z=\arcosh\left(\frac{x-2}{2}\right),$$

$$\mathbf dx=2\sinh(z)\,\mathbf dz$$

$$\int\frac{x^2+2x+4}{\sqrt{(x-2)^2-4}}\,\mathbf dx=\int(2\cosh(z)+2)^2+4\cosh(z)+8\,\mathbf dz$$

$$=\sinh(2z)+12\sinh(z)+14z+C$$

$$=\sqrt{x^2-4x}\left(\frac{x}{2}+5\right)+14\ln\left|x-2+\sqrt{x^2-4x}\right|+C$$

Identities used:

$$\cosh^2(z)-1=\sinh^2(z)$$

$$\cosh^2(z)=\frac{\cosh(2z)+1}{2}$$

$$\sinh(2z)=2\sinh(z)\cosh(z)$$

$$\sinh(\arcosh(z))=\sqrt{z^2-1}$$

$$\arcosh(z)=\ln|z+\sqrt{z^2-1}|$$

Also,

$$\frac{\mathbf d}{\mathbf dz}\sinh(z)=\cosh(z)$$

$$\frac{\mathbf d}{\mathbf dz}\cosh(z)=\sinh(z)$$

Letting Wikipedia do most of the 'work',

hyperbolic function

inverse hyperbolic function

If you have any questions please post. :)
 
Thank you, that was very helpful
Saw some other solutions to this but this was far better
You really gave a very concise and comprehensive way to do it

I sent a croped image to a friend and he wanted to know where it came from. Malaho
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K