206.8.7.47 int sin(10x) cos(5x) dx Simpsons rule

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx
Click For Summary
SUMMARY

This discussion focuses on the application of Simpson's Rule to approximate the integral of the function $\sin(10x) \cos(5x)$ over the interval from 0 to $\frac{3\pi}{5}$. Using 8 intervals (n=8), the approximation yields a result of approximately 0.2667. The discussion also highlights the exact evaluation of the integral, which results in $\frac{4}{15}$. Participants express frustration regarding the necessity of using Simpson's Rule when exact methods are available, emphasizing the educational context of the exercise.

PREREQUISITES
  • Understanding of Simpson's Rule for numerical integration
  • Familiarity with trigonometric identities and integrals
  • Knowledge of sigma notation and its application in summation
  • Basic calculus concepts, including definite integrals
NEXT STEPS
  • Study the derivation of Simpson's Rule and its applications in numerical analysis
  • Explore trigonometric integral techniques, particularly for products of sine and cosine functions
  • Learn about numerical integration methods beyond Simpson's Rule, such as the Trapezoidal Rule
  • Investigate software tools for numerical integration, such as MATLAB or Python's SciPy library
USEFUL FOR

Students learning numerical methods, educators teaching calculus, and anyone interested in the practical applications of numerical integration techniques.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
206.8.7.47
$\text{use Simpsons rule} \\
\text{n=8} $

$$\displaystyle
\int_{0}^{3\pi/5} \sin\left({10x}\right)\cos\left({5x}\right)\,dx
\approx \frac{4}{15}=0.2667$$
$$\displaystyle
n=8\therefore \varDelta{x} =\frac{3\pi}{40} \\
S_{47}=\frac{\pi}{40}\left[
y_0+4y_1+2y_2 +4y_3+2y_4+4y_5 +2y_6+4y_7+y_8
\right]\approx -0.0183$$
 
Last edited:
Physics news on Phys.org
karush said:
206.8.7.47
$\text{use Simpsons rule} \\
\text{n=8} $

$$\displaystyle
\int_{0}^{3\pi/5} \sin\left({10x}\right)\cos\left({5x}\right)\,dx
\approx \frac{4}{15}=0.2667$$
$$\displaystyle
n=8\therefore \varDelta{x} =\frac{3\pi}{40} \\
S_{47}=\frac{\pi}{40}\left[
y_0+4y_1+2y_2 +4y_3+2y_4+2y_5 +4y_6+2y_7+y_8
\right]\approx -0.0183$$
$\text{how would this be derived in }
\displaystyle \sum_{k=1}^{8}$

Why use Simpson's Rule when you can evaluate this exactly?

$\displaystyle \begin{align*} \int_0^{\frac{3\,\pi}{5}}{ \sin{ (10\,x)} \cos{ (5\,x)} \,\mathrm{d}x } &= \int_0^{\frac{3\,\pi}{5}}{ 2\sin{(5\,x)}\cos{(5\,x)}\cos{(5\,x)}\,\mathrm{d}x } \\ &= -\frac{2}{5}\int_0^{\frac{3\,\pi}{5}}{ -5\sin{(5\,x)}\cos^2{(5\,x)}\,\mathrm{d}x } \end{align*}$

Let $\displaystyle \begin{align*} u = \cos{(5\,x)} \implies \mathrm{d}u = -5\sin{(5\,x)} \end{align*}$ noting that $\displaystyle \begin{align*} u(0) = 1 \end{align*}$ and $\displaystyle \begin{align*} u\left( \frac{3\,\pi}{5} \right) = -1 \end{align*}$ giving

$\displaystyle \begin{align*} -\frac{2}{5} \int_0^{\frac{3\,\pi}{5}}{ -5\sin{(5\,x)}\cos^2{(5\,x)}\,\mathrm{d}x } &= -\frac{2}{5} \int_1^{-1}{ u^2\,\mathrm{d}u } \\ &= \frac{2}{5} \int_{-1}^1{ u^2\,\mathrm{d}u } \\ &= \frac{2}{5} \left[ \frac{u^3}{3} \right] _{-1}^1 \\ &= \frac{2}{5} \left( \frac{1}{3} + \frac{1}{3} \right) \\ &= \frac{4}{15} \end{align*}$
 
true, but homework was on Simpson's Rule

I have no earthly idea who would ever use it??

big pain😰
 
karush said:
true, but homework was on Simpson's Rule

I have no earthly idea who would ever use it??

big pain😰

Approximate integral methods are typically applied to integrals that don't have an elementary anti-derivative, and they are now done using software with a large number of intervals, or to a designated degree of accuracy.

You want:

$$S_{8}=\frac{\pi}{40}\left(y_0+4y_1+2y_2+4y_3+2y_4+4y_5+2y_6+4y_7+y_8\right)$$

In sigma notation, that would be:

$$S_8=\frac{\pi}{40}\sum_{k=0}^{3}\left(y_{2k}+4y_{2k+1}+y_{2k+2}\right)$$
 
And when you are learning a numerical method, it is not uncommon to be given examples that can be done using other, simpler, methods so that you can check your results. The
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K