MHB 206.r2.11find the power series representation

Click For Summary
The power series representation for the function f(x) = x^7/(3 + 5x^2) is derived using the geometric series expansion, resulting in the series sum from k=0 to infinity of [(-1)^k 5^k x^(2k+7)]/(3^(k+1)). The interval of convergence for this series is determined to be infinite. The derivative of the series is corrected to include the factor (2k + 7) in the exponent, leading to the expression for f'(x) as the sum from k=0 to infinity of [(2k + 7)(-1)^k 5^k x^(2k+6)]/(3^(k+1)). The discussion highlights the importance of accurately representing the terms and correcting typographical errors in the series. Overall, the focus is on deriving the power series and its derivative accurately.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{206.r2.11}$
$\textsf{find the power series represntation for
$\displaystyle f(x)=\frac{x^7}{3+5x^2}$
(state the interval of convergence),
then find the derivative of the series}$
\begin{align}
f(x)&=\frac{x^7}{3}\implies\frac{1}{1-\left(-\frac{5}{3}x^2\right)}&(1)\\
&=\sum_{k=0}^{\infty}\left(-\frac{5}{3}x^2\right)^k &(2)\\
&=\sum_{k=0}^{\infty}\frac{(-1)^k 5^k x^{2k+7}}{3^{k+1}} &(3)\\
f'(x)&=\sum_{k=0}^{\infty}\frac{(-1)^k 5^k x^{2k+6a}}{3^{k+1}} &(4)
\end{align}
$\textit{not sure where eq (3) comes from... looks like
Bessel function order 0...}\\$
$\textit{this was from a handwritten example very hard to read! if so the radius of convergence $=\infty$}$
 
Physics news on Phys.org
Re: 206.r2.11find the power series represntation

karush said:
$\tiny{206.r2.11}$
$\textsf{find the power series represntation for
$\displaystyle f(x)=\frac{x^7}{3+5x^2}$
(state the interval of convergence),
then find the derivative of the series}$
\begin{align}
f(x)&=\frac{x^7}{3}\implies\frac{1}{1-\left(-\frac{5}{3}x^2\right)}&(1)\\
&=\sum_{k=0}^{\infty}\left(-\frac{5}{3}x^2\right)^k &(2)\\
&=\sum_{k=0}^{\infty}\frac{(-1)^k 5^k x^{2k+7}}{3^{k+1}} &(3)\\
f'(x)&=\sum_{k=0}^{\infty}\frac{(-1)^k 5^k x^{2k+6a}}{3^{k+1}} &(4)
\end{align}
$\textit{not sure where eq (3) comes from... looks like
Bessel function order 0...}\\$
$\textit{this was from a handwritten example very hard to read! if so the radius of convergence $=\infty$}$
The expression in step 2 is for [math]\frac{1}{1 - \left ( - \frac{5}{3} x^2 \right ) }[/math].

When step 3 comes along they brought back in the [math]x^7 / 3[/math] part. We also have that [math](-1)^k 5^k / 3^{k + 1}[/math] is simply the expanded form of [math](1/3)(-5/3)^k[/math]. I don't know why they expanded that.

Finally, in step 4 the "a" after the exponent 6 should not be there (typo?) and the factor of 7 from the derivative is missing.

-Dan
 
ok thanks for eexpanding on this
the examples in the book had the factoral ! in them so I assuume whaever was just 1.
the 6a is my typo

factor of 7 ?
 
Last edited:
karush said:
ok thanks for eexpanding on this
the examples in the book had the factoral ! in them so I assuume whaever was just 1.
the 6a is my typo
No factorials here since we are dealing with a geometric series. This form doesn't use them.

factor of 7 ?
Sorry, there is a missing factor of 2k + 7, not just the 7. Line 4 is the derivative of line 3. The exponent is reduced but the factor is not there. The expression should be
[math]f'(x) = \sum_{k = 0}^{\infty} (2k + 7) \frac{(-1)^k 5^k}{3^{k + 1}} x^{2k + 6}[/math]

-Dan