215 AP Calculus Exam Problem Power Rule

Click For Summary

Discussion Overview

The discussion revolves around the differentiation of the function \( y=(x^3-\cos x)^5 \) using the power rule and chain rule in the context of an AP Calculus exam problem. Participants analyze multiple-choice answers for the derivative and address potential errors in the options provided.

Discussion Character

  • Homework-related
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants express concern that the wording of the problem could be improved for clarity.
  • One participant identifies that choice (E) is closest to being correct but contains a sign error and is missing a square in the second variable factor.
  • Another participant emphasizes the need to apply both the power rule and the chain rule for differentiation.
  • There is a repeated emphasis on the correct form of the derivative, specifically noting the importance of the term \( 3x^2 + \sin x \) in the derivative expression.
  • Participants point out the need for accuracy in the multiple-choice options, particularly regarding the presence of a square in the derivative calculation.

Areas of Agreement / Disagreement

Participants generally agree on the need for accuracy in the derivative calculation and the application of the power and chain rules. However, there are disagreements regarding the correctness of the multiple-choice options, particularly choice (E), which is noted to have errors.

Contextual Notes

Limitations include potential misinterpretations of the multiple-choice options and the need for careful attention to detail in differentiation steps. The discussion does not resolve the correctness of the options presented.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
If $y=(x^3-cos x)^5$, then $y'=$(A) $\quad 5(x^3-\cos x)^4$(B) $\quad 5(3x^2+\sin x)^4$(C) $\quad 5(3x^2+\sin x)^4$(D) $\quad 5(x^3+\sin x)^4(6x+\cos x)$(E) $\quad 5(x^3+\cos x)^4(3x+\sin x)$
The Power Rule

$\displaystyle{d\over dx}x^n = nx^{n-1}$

by observation we know the derivative of the inside is multiplied to the outside
thus this leaves option (E) the other steps probably are not necessary

ok I am sure this could be worded better. but I think many students take these tests and are not used multiple choice and just plunge into timely calculations when observation could be within a few seconds
 
Physics news on Phys.org
$$y'=5(x^3-\cos x)^4(3x^2+\sin x)$$
 
Last edited:
karush said:
If $y=(x^3-cos x)^5$, then $y'=$(A) $\quad 5(x^3-\cos x)^4$(B) $\quad 5(3x^2+\sin x)^4$(C) $\quad 5(3x^2+\sin x)^4$(D) $\quad 5(x^3+\sin x)^4(6x+\cos x)$(E) $\quad 5(x^3+\cos x)^4(3x+\sin x)$
The Power Rule

$\displaystyle{d\over dx}x^n = nx^{n-1}$

by observation we know the derivative of the inside is multiplied to the outside
thus this leaves option (E) the other steps probably are not necessary

ok I am sure this could be worded better. but I think many students take these tests and are not used multiple choice and just plunge into timely calculations when observation could be within a few seconds

Choice (E) is closest to being correct, but as you typed it, has a sign error in the first variable factor and is missing a square in the second.
It's not just the power rule alone, it's also an application of the chain rule.

$\dfrac{d}{dx} u^n = nu^{n-1} \cdot \dfrac{du}{dx}$

$y = (x^3-\cos{x})^5 \implies y'=5(x^3-\cos{x})^4 (3x^2 + \sin{x})$
 
If $y=(x^3-cos x)^5$, then $y'=$

(A) $\quad 5(x^3-\cos x)^4$

(B) $\quad 5(3x^2+\sin x)^4$

(C) $\quad 5(3x^2+\sin x)^4$

(D) $\quad 5(x^3+\sin x)^4(6x+\cos x)$

(E) $\quad 5(x^3-\cos x)^4(3x+\sin x)$
The ChainRule
$\displaystyle \dfrac{d}{dx}u^n = nu^{n-1} \cdot \dfrac{du}{dx}$
so
$y = (x^3-\cos{x})^5 \implies y'=5(x^3-\cos{x})^4 (3x^2 + \sin{x})\quad (E)$
hopefully
 
karush said:
If $y=(x^3-cos x)^5$, then $y'=$

(A) $\quad 5(x^3-\cos x)^4$

(B) $\quad 5(3x^2+\sin x)^4$

(C) $\quad 5(3x^2+\sin x)^4$

(D) $\quad 5(x^3+\sin x)^4(6x+\cos x)$

(E) $\quad 5(x^3-\cos x)^4(3x+\sin x)$
The ChainRule
$\displaystyle \dfrac{d}{dx}u^n = nu^{n-1} \cdot \dfrac{du}{dx}$
so
$y = (x^3-\cos{x})^5 \implies y'=5(x^3-\cos{x})^4 (3x^2 + \sin{x})\quad (E)$
hopefully


you forgot the square in the $\dfrac{du}{dx}$ factor ... again.
 
where ?
 
karush said:
where ?
Look at answer key for E). It should be a [math]3x^2[/math], not 3x.

-Dan
 
got it
thanks
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K