MHB 232.5a Evaluate the double integral

Click For Summary
The discussion revolves around evaluating the double integral of the function \(xy\sqrt{x^2+y^2}\) over the rectangular region defined by \(R=[0,2]\times[-1,1]\). The initial setup of the integral is confirmed, and participants explore different approaches, including a substitution involving \(x=y\tan\theta\). However, one contributor suggests simplifying the evaluation by treating \(x\) as a constant and calculating the resulting single integrals for specific values of \(x\). The conversation highlights the complexity of the integral while encouraging a more intuitive approach to finding the solution. Overall, the participants are navigating through the intricacies of double integrals and exploring strategies for simplification.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{232.5a}\\
\textsf{Evaluate the double integral}$
\begin{align*}\displaystyle
I_a&=\iint\limits_{R} xy\sqrt{x^2+y^2} \, dA \\
R&=[0,2]\times[-1,1]
\end{align*}
Ok, just want to see if I made the first step correct.
this looks like simply a rectangle so x and y are basically interchangeable
\begin{align*}
&=\int_{-1}^{1} \int_{0}^{2} xy\sqrt{x^2+y^2} \,dx \,dy
\end{align*}
however the next step looks kinda daunting:confused:
 
Physics news on Phys.org
How about the substitution $x=y\tan\theta$?
 
greg1313 said:
How about the substitution $x=y\tan\theta$?

are you suggesting that

\begin{align*}
&=\int_{-1}^{1} \int_{a}^{b} y^2\tan\theta \, \sqrt{y^2\tan^2\theta+y^2} \,d\theta \,dy
\end{align*}

not sure what a and b would be on the limits
 
karush said:
$\tiny{232.5a}\\
\textsf{Evaluate the double integral}$
\begin{align*}\displaystyle
I_a&=\iint\limits_{R} xy\sqrt{x^2+y^2} \, dA \\
R&=[0,2]\times[-1,1]
\end{align*}
Ok, just want to see if I made the first step correct.
this looks like simply a rectangle so x and y are basically interchangeable
\begin{align*}
&=\int_{-1}^{1} \int_{0}^{2} xy\sqrt{x^2+y^2} \,dx \,dy
\end{align*}
however the next step looks kinda daunting:confused:

Ummm... No. Do an experiment for me. Take x = 2 and evaluate the single integral. Then, back up and take x = 1 and evaluate the single integral. See if you notice something. This is an eyeball problem.

Definition: "Eyeball Problem" - Just look at it and call out the answer before your neighbor beats you to it.
 
that is giving me a headache

I presume you mean separate x and y
 
karush said:
that is giving me a headache

I presume you mean separate x and y

No, I mean just pick x = 2 and then ignore that x exists and ignore the inner integral.

$\int\limits_{-1}^{1}2y\sqrt{4+y^2}\;dy$

What do you get?

Now, x = 1.

$\int\limits_{-1}^{1}y\sqrt{1+y^2}\;dy$

What do you get?
 
Last edited:
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K