242.10.3.27 using the geometric formula of a sum

Click For Summary

Discussion Overview

The discussion revolves around evaluating the infinite series $$S_j=\sum_{j=1}^{\infty}3^{-3j}$$ and its rewriting using the geometric series formula. Participants explore how to identify the parameters $a$ and $r$ in the context of the geometric series to arrive at the result of $\frac{1}{26}$.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Debate/contested

Main Points Raised

  • Some participants propose rewriting the series as $$S_j=\sum_{j=1}^{\infty} 27^{-j}$$ and using the geometric series formula to evaluate it.
  • Others clarify that the correct form of the geometric series formula should start from an index of 0 rather than 1, leading to a different interpretation of the parameters $a$ and $r$.
  • A later reply questions the validity of the formula used, suggesting that the series should be expressed as $$\sum_{0}^{\infty}ar^{n-1}$$ instead of starting from 1.
  • Some participants provide alternative expressions for the geometric series, indicating that $$\sum_{k=0}^{\infty}\left(ar^{k}\right)=\frac{a}{1-r}$$ and $$\sum_{k=1}^{\infty}\left(ar^{k}\right)=\frac{ar}{1-r}$$ are also valid forms.

Areas of Agreement / Disagreement

Participants express differing views on the correct formulation of the geometric series and whether the series should start from index 0 or 1. There is no consensus on the correct interpretation of the formula, and the discussion remains unresolved regarding the implications of these formulations.

Contextual Notes

Limitations include potential misunderstandings of the series index and its impact on the evaluation of the sum. The discussion highlights the dependence on definitions and the need for clarity in mathematical expressions.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{242.10.3.27}$
evaluate
$$S_j=\sum_{j=1}^{\infty}3^{-3j}=$$
rewrite
$$S_j=\sum_{j=1}^{\infty} 27^{j-1}$$
using the geometric formula
$$\sum_{n=1}^{\infty}ar^{n-1}=\frac{a}{1-r}, \left| r \right|<1$$
how do we get $a$ and $r$ to get the answer of $\frac{1}{26}$
☕
 
Physics news on Phys.org
karush said:
$\tiny{242.10.3.27}$
evaluate
$$S_j=\sum_{j=1}^{\infty}3^{-3j}=$$
rewrite
$$S_j=\sum_{j=1}^{\infty} 27^{j-1}$$
using the geometric formula
$$\sum_{n=1}^{\infty}ar^{n-1}=\frac{a}{1-r}, \left| r \right|<1$$
how do we get $a$ and $r$ to get the answer of $\frac{1}{26}$
☕

there are a couple of issues here
$S_j=\sum_{j=1}^{\infty}3^{-3j}=$
=> $S_j=\sum_{j=1}^{\infty} 27^{-j}$
$= \sum_{j=1}^{\infty} (\frac{1}{27})^j$
$= \frac{1}{27}\sum_{j=0}^{\infty} (\frac{1}{27})^j$ (kinldy note that the sum index is from 0 and not 1)
in the above $a= \frac{1}{27}$ and $r =\frac{1}{27}$
= $\frac{1}{27}( \frac{1}{1-\frac{1}{27}})= \frac{1}{26}$
 
thanks that explained things...😎
 
$\tiny{242.10.3.27}$
$\text{evaluate}\\$
$$S_j=\sum_{j=1}^{\infty}3^{-3j}=$$
$\text{rewrite} \\$
$$\displaystyle
S_j=\sum_{j=1}^{\infty} 27^{-j}
=\sum_{j=1}^{\infty}\left(\frac{1}{27}\right)^{j}
=\frac{1}{27}\sum_{j=0}^{\infty}\left(\frac{1}{27}\right)^{j}$$
$\text{using the geometric formula }$
$$\displaystyle
\sum_{n=1}^{\infty}ar^{n-1}
=\frac{a}{1-r}, \left| r \right|<1$$
$\text{then }$ $a=\frac{1}{27}$ $\text{ and } r=\frac{1}{27} \\$
$$S_j= \frac{1}{27}\left[\frac{1}{1-\frac{1}{27}}\right]=\frac{1}{26}$$
☕
 
Last edited:
karush said:
$\tiny{242.10.3.27}$
$\text{evaluate}\\$
$$S_j=\sum_{j=1}^{\infty}3^{-3j}=$$
$\text{rewrite} \\$
$$\displaystyle
S_j=\sum_{j=1}^{\infty} 27^{-j}
=\sum_{j=1}^{\infty}\left(\frac{1}{27}\right)^{j}
=\frac{1}{27}\sum_{j=0}^{\infty}\left(\frac{1}{27}\right)^{j}$$
$\text{using the geometric formula }$
$$\displaystyle
\sum_{n=1}^{\infty}ar^{n-1}
=\frac{a}{1-r}, \left| r \right|<1$$
$\text{then }$ $a=\frac{1}{27}$ $\text{ and } r=\frac{1}{27} \\$
$$S_j= \frac{1}{27}\left[\frac{1}{1-\frac{1}{27}}\right]=\frac{1}{26}$$
☕
above is right except that
$$\displaystyle
\sum_{n=1}^{\infty}ar^{n-1}
=\frac{a}{1-r}, \left| r \right|<1$$

should be
$$\displaystyle
\sum_{0}^{\infty}ar^{n-1}
=\frac{a}{1-r}, \left| r \right|<1$$
 
kaliprasad said:
above is right except that
$$\displaystyle
\sum_{n=1}^{\infty}ar^{n-1}
=\frac{a}{1-r}, \left| r \right|<1$$

should be
$$\displaystyle
\sum_{0}^{\infty}ar^{n-1}
=\frac{a}{1-r}, \left| r \right|<1$$
this is from the textbook
 

Attachments

  • Capture+_2016-10-23-07-24-06.png
    Capture+_2016-10-23-07-24-06.png
    4.4 KB · Views: 92
This is what W|A returns (for $|r|<1$):

$$\sum_{k=0}^{\infty}\left(ar^{k-1}\right)=\frac{a}{r(1-r)}$$

$$\sum_{k=1}^{\infty}\left(ar^{k-1}\right)=\frac{a}{1-r}$$

However, these imply:

$$\sum_{k=0}^{\infty}\left(ar^{k}\right)=\frac{a}{1-r}$$

$$\sum_{k=1}^{\infty}\left(ar^{k}\right)=\frac{ar}{1-r}$$
 
kaliprasad said:
above is right except that
$$\displaystyle
\sum_{n=1}^{\infty}ar^{n-1}
=\frac{a}{1-r}, \left| r \right|<1$$

should be
$$\displaystyle
\sum_{0}^{\infty}ar^{n-1}
=\frac{a}{1-r}, \left| r \right|<1$$
No, that would be for r^nnot r^{n-1}.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K