MHB 242.10.3.27 using the geometric formula of a sum

Click For Summary
SUMMARY

The forum discussion centers on evaluating the infinite series \( S_j = \sum_{j=1}^{\infty} 3^{-3j} \) using the geometric series formula. The series is rewritten as \( S_j = \sum_{j=1}^{\infty} 27^{-j} \), where \( a = \frac{1}{27} \) and \( r = \frac{1}{27} \). Applying the geometric series formula \( \sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r} \), the final result is confirmed as \( S_j = \frac{1}{26} \). The discussion also clarifies the correct indexing for the geometric series.

PREREQUISITES
  • Understanding of geometric series and their convergence criteria.
  • Familiarity with the formula for the sum of an infinite geometric series.
  • Basic knowledge of series notation and manipulation.
  • Ability to work with limits and convergence in mathematical series.
NEXT STEPS
  • Study the derivation and applications of the geometric series formula.
  • Explore convergence tests for infinite series, including the ratio test and root test.
  • Learn about power series and their convergence properties.
  • Investigate advanced topics in series, such as Taylor and Maclaurin series expansions.
USEFUL FOR

Mathematicians, students studying calculus, educators teaching series and sequences, and anyone interested in the application of geometric series in problem-solving.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{242.10.3.27}$
evaluate
$$S_j=\sum_{j=1}^{\infty}3^{-3j}=$$
rewrite
$$S_j=\sum_{j=1}^{\infty} 27^{j-1}$$
using the geometric formula
$$\sum_{n=1}^{\infty}ar^{n-1}=\frac{a}{1-r}, \left| r \right|<1$$
how do we get $a$ and $r$ to get the answer of $\frac{1}{26}$
☕
 
Physics news on Phys.org
karush said:
$\tiny{242.10.3.27}$
evaluate
$$S_j=\sum_{j=1}^{\infty}3^{-3j}=$$
rewrite
$$S_j=\sum_{j=1}^{\infty} 27^{j-1}$$
using the geometric formula
$$\sum_{n=1}^{\infty}ar^{n-1}=\frac{a}{1-r}, \left| r \right|<1$$
how do we get $a$ and $r$ to get the answer of $\frac{1}{26}$
☕

there are a couple of issues here
$S_j=\sum_{j=1}^{\infty}3^{-3j}=$
=> $S_j=\sum_{j=1}^{\infty} 27^{-j}$
$= \sum_{j=1}^{\infty} (\frac{1}{27})^j$
$= \frac{1}{27}\sum_{j=0}^{\infty} (\frac{1}{27})^j$ (kinldy note that the sum index is from 0 and not 1)
in the above $a= \frac{1}{27}$ and $r =\frac{1}{27}$
= $\frac{1}{27}( \frac{1}{1-\frac{1}{27}})= \frac{1}{26}$
 
thanks that explained things...😎
 
$\tiny{242.10.3.27}$
$\text{evaluate}\\$
$$S_j=\sum_{j=1}^{\infty}3^{-3j}=$$
$\text{rewrite} \\$
$$\displaystyle
S_j=\sum_{j=1}^{\infty} 27^{-j}
=\sum_{j=1}^{\infty}\left(\frac{1}{27}\right)^{j}
=\frac{1}{27}\sum_{j=0}^{\infty}\left(\frac{1}{27}\right)^{j}$$
$\text{using the geometric formula }$
$$\displaystyle
\sum_{n=1}^{\infty}ar^{n-1}
=\frac{a}{1-r}, \left| r \right|<1$$
$\text{then }$ $a=\frac{1}{27}$ $\text{ and } r=\frac{1}{27} \\$
$$S_j= \frac{1}{27}\left[\frac{1}{1-\frac{1}{27}}\right]=\frac{1}{26}$$
☕
 
Last edited:
karush said:
$\tiny{242.10.3.27}$
$\text{evaluate}\\$
$$S_j=\sum_{j=1}^{\infty}3^{-3j}=$$
$\text{rewrite} \\$
$$\displaystyle
S_j=\sum_{j=1}^{\infty} 27^{-j}
=\sum_{j=1}^{\infty}\left(\frac{1}{27}\right)^{j}
=\frac{1}{27}\sum_{j=0}^{\infty}\left(\frac{1}{27}\right)^{j}$$
$\text{using the geometric formula }$
$$\displaystyle
\sum_{n=1}^{\infty}ar^{n-1}
=\frac{a}{1-r}, \left| r \right|<1$$
$\text{then }$ $a=\frac{1}{27}$ $\text{ and } r=\frac{1}{27} \\$
$$S_j= \frac{1}{27}\left[\frac{1}{1-\frac{1}{27}}\right]=\frac{1}{26}$$
☕
above is right except that
$$\displaystyle
\sum_{n=1}^{\infty}ar^{n-1}
=\frac{a}{1-r}, \left| r \right|<1$$

should be
$$\displaystyle
\sum_{0}^{\infty}ar^{n-1}
=\frac{a}{1-r}, \left| r \right|<1$$
 
kaliprasad said:
above is right except that
$$\displaystyle
\sum_{n=1}^{\infty}ar^{n-1}
=\frac{a}{1-r}, \left| r \right|<1$$

should be
$$\displaystyle
\sum_{0}^{\infty}ar^{n-1}
=\frac{a}{1-r}, \left| r \right|<1$$
this is from the textbook
 

Attachments

  • Capture+_2016-10-23-07-24-06.png
    Capture+_2016-10-23-07-24-06.png
    4.4 KB · Views: 89
This is what W|A returns (for $|r|<1$):

$$\sum_{k=0}^{\infty}\left(ar^{k-1}\right)=\frac{a}{r(1-r)}$$

$$\sum_{k=1}^{\infty}\left(ar^{k-1}\right)=\frac{a}{1-r}$$

However, these imply:

$$\sum_{k=0}^{\infty}\left(ar^{k}\right)=\frac{a}{1-r}$$

$$\sum_{k=1}^{\infty}\left(ar^{k}\right)=\frac{ar}{1-r}$$
 
kaliprasad said:
above is right except that
$$\displaystyle
\sum_{n=1}^{\infty}ar^{n-1}
=\frac{a}{1-r}, \left| r \right|<1$$

should be
$$\displaystyle
\sum_{0}^{\infty}ar^{n-1}
=\frac{a}{1-r}, \left| r \right|<1$$
No, that would be for r^nnot r^{n-1}.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K