MHB 242.2q.3 Find the derivative (1+ln{(t))/(1-ln{(t))

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Derivative
Click For Summary
The derivative of the function y = (1 + ln(t)) / (1 - ln(t)) is calculated using the quotient rule. The derivatives of the numerator and denominator are f' = 1/t and g' = 1/t, respectively. Applying the quotient rule results in y' = 2 / (t(ln(t) - 1)^2). The calculation is confirmed to be correct, with one user expressing satisfaction with the result. Overall, the discussion focuses on verifying the derivative and ensuring accuracy before finalizing the work.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{242.2q.3}$
$\textsf{Find the derivative}\\$
\begin{align}
\displaystyle
y&=\frac{1+\ln{(t)}}{1-\ln{(t)}}
=-\frac{1+\ln(t)}{\ln(t)-1}=\frac{f}{g}\\
f&=1+\ln(t) \therefore f'=\frac{1}{t}\\
g&=\ln(t)-1 \therefore g'=\frac{1}{t}\\
y'&= \frac{f\cdot g' - f'\cdot g}{g^2}\\
&=\frac{(1+\ln(t))(1/t)-(\ln(t)-1)(1/t)}{(\ln(t)-1)^2} \\
&=\frac{1+\ln(t)-\ln(t)+1}{t(\ln(t)-1)^2}\\
&=\dfrac{2}{t\left(\ln\left(t\right)-1\right)^2}
\end{align}

$\textit{think this is ok, but suggestions before I cp it into overleaf?}$
 
Physics news on Phys.org
The derivative is correct! (Yes)
 
took me too long to do it...(Wasntme)
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K