MHB 242.7.5.88 1/((X+2)sqrt(x^2+4x+3)) complete the square

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Complete Square
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\large{242.7.5.88}$
$$\displaystyle
I_{88}=\int\frac{dx}{(x+2)\sqrt{{x}^{2}+4x+3}}=
-\arcsin\left(\dfrac{1}{\left|x+2\right|}\right)+C $$
complete the square of
$${x}^{2}+4x+3 ={x}^{2}+4x+3+1-1=(x+2)^2-1 $$
Set $u=(x+2) \ \ du=dx$ then

$$\displaystyle I_{88}=\int\frac{1}{u \sqrt{u^2-1}} \, du \\

u=\cosh(y) \ \ du=\sinh(y) \, dy$$
$$\displaystyle I_{88}
=\int\frac{\sinh(y)}{\cosh(y) \sqrt{cosh^2(y) -1}} \, dy
=\int. ? $$
 
Last edited:
Physics news on Phys.org
Try the substitution $u=\cosh(y)$ and refer to here for standard integrals of hyperbolic functions and other information.

$$\int\dfrac{1}{(x+2)\sqrt{x^2+4x+3}}\,dx=\tan^{-1}\left(\sqrt{x^2+4x+3}\right)+C$$

is a result.
 
Even simpler, try $u=\sec(y)$.

$$\int\dfrac{1}{(x+2)\sqrt{x^2+4x+3}}\,dx=\cos^{-1}\left(\dfrac{1}{x+2}\right)+C$$

is a result.
 

Similar threads

Replies
3
Views
2K
Replies
6
Views
2K
Replies
2
Views
2K
Replies
6
Views
3K
Replies
2
Views
1K
Replies
7
Views
2K
Replies
6
Views
3K
Replies
8
Views
2K
Back
Top