242.7.5.88 1/((X+2)sqrt(x^2+4x+3)) complete the square

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Complete Square
Click For Summary
SUMMARY

The integral \( I_{88} = \int \frac{dx}{(x+2)\sqrt{x^2+4x+3}} \) can be solved using the method of completing the square and hyperbolic substitutions. The expression \( x^2 + 4x + 3 \) simplifies to \( (x+2)^2 - 1 \) through completing the square. By substituting \( u = (x+2) \) and using hyperbolic functions, the integral can be transformed into a more manageable form. The final results include \( -\arcsin\left(\frac{1}{|x+2|}\right) + C \) and \( \cos^{-1}\left(\frac{1}{x+2}\right) + C \) as valid solutions.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with hyperbolic functions
  • Knowledge of completing the square technique
  • Proficiency in substitution methods for integrals
NEXT STEPS
  • Study hyperbolic function integrals and their applications
  • Learn advanced techniques in integral calculus, focusing on substitution methods
  • Explore the properties and applications of inverse trigonometric functions
  • Practice completing the square with various polynomial expressions
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus, integral evaluation, and advanced algebraic techniques.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\large{242.7.5.88}$
$$\displaystyle
I_{88}=\int\frac{dx}{(x+2)\sqrt{{x}^{2}+4x+3}}=
-\arcsin\left(\dfrac{1}{\left|x+2\right|}\right)+C $$
complete the square of
$${x}^{2}+4x+3 ={x}^{2}+4x+3+1-1=(x+2)^2-1 $$
Set $u=(x+2) \ \ du=dx$ then

$$\displaystyle I_{88}=\int\frac{1}{u \sqrt{u^2-1}} \, du \\

u=\cosh(y) \ \ du=\sinh(y) \, dy$$
$$\displaystyle I_{88}
=\int\frac{\sinh(y)}{\cosh(y) \sqrt{cosh^2(y) -1}} \, dy
=\int. ? $$
 
Last edited:
Physics news on Phys.org
Try the substitution $u=\cosh(y)$ and refer to here for standard integrals of hyperbolic functions and other information.

$$\int\dfrac{1}{(x+2)\sqrt{x^2+4x+3}}\,dx=\tan^{-1}\left(\sqrt{x^2+4x+3}\right)+C$$

is a result.
 
Even simpler, try $u=\sec(y)$.

$$\int\dfrac{1}{(x+2)\sqrt{x^2+4x+3}}\,dx=\cos^{-1}\left(\dfrac{1}{x+2}\right)+C$$

is a result.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K