MHB 242.8.2.8 int x sin (x/5) dx. IBP

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx Sin
Click For Summary
The integral I_8 = ∫(x)sin(x/5) dx is solved using integration by parts (IBP). The substitution u = x/5 simplifies the integral to 25∫u sin(u) du. Applying IBP, the integration yields I_8 = -5x cos(x/5) + 25 sin(x/5) + C. The process emphasizes the importance of correctly applying IBP and substitution techniques in solving integrals involving products of polynomials and trigonometric functions. The final result is confirmed as accurate and satisfactory.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\large{242.8.2.8}$
$\displaystyle
I_8=\int(x)\sin{\left(\frac{x}{5}\right)} \, dx=
25\sin\left(\dfrac{x}{5}\right)-5\cos\left(\dfrac{x}{5}\right)x$
$$\begin{align}
u&=\frac{x}{5} &5du&=dx &x&=5u \\
\end{align}\\
$$ thus
$\displaystyle
I_8=25\int u\sin{u} \, du$
IBP
$$\begin{align}
u_1&=u &dv_1&= \sin{u} \, du \\
du_1&=du &v_1&=-\cos{u}
\end{align}$$
Continue?
 
Physics news on Phys.org
karush said:
$\large{242.8.2.8}$
$\displaystyle
I_8=\int(x)\sin{\left(\frac{x}{5}\right)} \, dx=
25\sin\left(\dfrac{x}{5}\right)-5\cos\left(\dfrac{x}{5}\right)x$
$$\begin{align}
u&=\frac{x}{5} &5du&=dx &x&=5u \\
\end{align}\\
$$ thus
$\displaystyle
I_8=25\int u\sin{u} \, du$
IBP
$$\begin{align}
u_1&=u &dv_1&= \sin{u} \, du \\
du_1&=du &v_1&=-\cos{u}
\end{align}$$
Continue?
Integration by parts.
[math]I_8 = -u~cos(u) + \int cos(u)~du[/math]

-Dan
 
karush said:
$\displaystyle I \;=\; \int(x)\sin{\left(\tfrac{x}{5}\right)} \, dx$
\text{Integration by parts: }\;\int u\,dv \;=\;uv - \int v\,du

. . \begin{array}{cccc}<br /> u \,=\, x &amp;&amp; dv \,=\,\sin(\frac{x}{5})\,dx \\<br /> du \,=\,dx &amp;&amp; v \,=\,-5\cos(\frac{x}{5}) \end{array}

I \;=\;(x)\left(-5\cos(\tfrac{x}{5})\right) - \int\left(-5\cos(\tfrac{x}{5})\right)\,dx

I \;=\;-5x\cos(\tfrac{x}{5}) + 5\int\cos(\tfrac{x}{5})\,dx

I \;=\;-5x\cos(\tfrac{x}{5}) + 25\sin(\tfrac{x}{5}) +C

 
$\large{242.8.2.8}$
$\displaystyle
I_8=\int(x)\sin{\left(\frac{x}{5}\right)} \, dx=
25\sin\left(\dfrac{x}{5}\right)-5\cos\left(\dfrac{x}{5}\right)x$
IBP
$\displaystyle \begin{array}{cccc}
u \,=\, x && dv \,=\,\sin(\frac{x}{5})\,dx \\
du \,=\,dx && v \,=\,-5\cos(\frac{x}{5}) \end{array}$
$\displaystyle \;\int u\,dv \;=\;uv - \int v\,du$
$\displaystyle I_8 \;=\;(x)\left(-5\cos(\tfrac{x}{5})\right) - \int\left(-5\cos(\tfrac{x}{5})\right)\,dx$
$\displaystyle I_8 \;=\;-5x\cos(\tfrac{x}{5}) + 5\int\cos(\tfrac{x}{5})\,dx$
$\displaystyle I_8 \;=\;-5x\cos(\tfrac{x}{5}) + 25\sin(\tfrac{x}{5}) +C$
 
karush said:
$\large{242.8.2.8}$
$\displaystyle
I_8=\int(x)\sin{\left(\frac{x}{5}\right)} \, dx=
25\sin\left(\dfrac{x}{5}\right)-5\cos\left(\dfrac{x}{5}\right)x$
IBP
$\displaystyle \begin{array}{cccc}
u \,=\, x && dv \,=\,\sin(\frac{x}{5})\,dx \\
du \,=\,dx && v \,=\,-5\cos(\frac{x}{5}) \end{array}$
$\displaystyle \;\int u\,dv \;=\;uv - \int v\,du$
$\displaystyle I_8 \;=\;(x)\left(-5\cos(\tfrac{x}{5})\right) - \int\left(-5\cos(\tfrac{x}{5})\right)\,dx$
$\displaystyle I_8 \;=\;-5x\cos(\tfrac{x}{5}) + 5\int\cos(\tfrac{x}{5})\,dx$
$\displaystyle I_8 \;=\;-5x\cos(\tfrac{x}{5}) + 25\sin(\tfrac{x}{5}) +C$
Looks good. (Nod)

-Dan
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K