242.8.2.8 int x sin (x/5) dx. IBP

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx Sin
Click For Summary
SUMMARY

The integral of the function \( I_8 = \int x \sin\left(\frac{x}{5}\right) \, dx \) is solved using integration by parts (IBP). The substitution \( u = \frac{x}{5} \) simplifies the integral to \( I_8 = 25 \int u \sin(u) \, du \). Applying IBP results in the final expression \( I_8 = -5x \cos\left(\frac{x}{5}\right) + 25 \sin\left(\frac{x}{5}\right) + C \), where \( C \) is the constant of integration. This method effectively demonstrates the application of IBP in solving integrals involving products of polynomial and trigonometric functions.

PREREQUISITES
  • Understanding of integration techniques, specifically integration by parts (IBP).
  • Familiarity with trigonometric functions and their integrals.
  • Knowledge of substitution methods in calculus.
  • Basic algebraic manipulation skills.
NEXT STEPS
  • Study the application of integration by parts with different functions.
  • Explore advanced techniques in integral calculus, such as reduction formulas.
  • Learn about the properties and applications of trigonometric integrals.
  • Investigate numerical methods for approximating integrals when analytical solutions are complex.
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus, as well as educators teaching integration techniques.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\large{242.8.2.8}$
$\displaystyle
I_8=\int(x)\sin{\left(\frac{x}{5}\right)} \, dx=
25\sin\left(\dfrac{x}{5}\right)-5\cos\left(\dfrac{x}{5}\right)x$
$$\begin{align}
u&=\frac{x}{5} &5du&=dx &x&=5u \\
\end{align}\\
$$ thus
$\displaystyle
I_8=25\int u\sin{u} \, du$
IBP
$$\begin{align}
u_1&=u &dv_1&= \sin{u} \, du \\
du_1&=du &v_1&=-\cos{u}
\end{align}$$
Continue?
 
Physics news on Phys.org
karush said:
$\large{242.8.2.8}$
$\displaystyle
I_8=\int(x)\sin{\left(\frac{x}{5}\right)} \, dx=
25\sin\left(\dfrac{x}{5}\right)-5\cos\left(\dfrac{x}{5}\right)x$
$$\begin{align}
u&=\frac{x}{5} &5du&=dx &x&=5u \\
\end{align}\\
$$ thus
$\displaystyle
I_8=25\int u\sin{u} \, du$
IBP
$$\begin{align}
u_1&=u &dv_1&= \sin{u} \, du \\
du_1&=du &v_1&=-\cos{u}
\end{align}$$
Continue?
Integration by parts.
[math]I_8 = -u~cos(u) + \int cos(u)~du[/math]

-Dan
 
karush said:
$\displaystyle I \;=\; \int(x)\sin{\left(\tfrac{x}{5}\right)} \, dx$
\text{Integration by parts: }\;\int u\,dv \;=\;uv - \int v\,du

. . \begin{array}{cccc}<br /> u \,=\, x &amp;&amp; dv \,=\,\sin(\frac{x}{5})\,dx \\<br /> du \,=\,dx &amp;&amp; v \,=\,-5\cos(\frac{x}{5}) \end{array}

I \;=\;(x)\left(-5\cos(\tfrac{x}{5})\right) - \int\left(-5\cos(\tfrac{x}{5})\right)\,dx

I \;=\;-5x\cos(\tfrac{x}{5}) + 5\int\cos(\tfrac{x}{5})\,dx

I \;=\;-5x\cos(\tfrac{x}{5}) + 25\sin(\tfrac{x}{5}) +C

 
$\large{242.8.2.8}$
$\displaystyle
I_8=\int(x)\sin{\left(\frac{x}{5}\right)} \, dx=
25\sin\left(\dfrac{x}{5}\right)-5\cos\left(\dfrac{x}{5}\right)x$
IBP
$\displaystyle \begin{array}{cccc}
u \,=\, x && dv \,=\,\sin(\frac{x}{5})\,dx \\
du \,=\,dx && v \,=\,-5\cos(\frac{x}{5}) \end{array}$
$\displaystyle \;\int u\,dv \;=\;uv - \int v\,du$
$\displaystyle I_8 \;=\;(x)\left(-5\cos(\tfrac{x}{5})\right) - \int\left(-5\cos(\tfrac{x}{5})\right)\,dx$
$\displaystyle I_8 \;=\;-5x\cos(\tfrac{x}{5}) + 5\int\cos(\tfrac{x}{5})\,dx$
$\displaystyle I_8 \;=\;-5x\cos(\tfrac{x}{5}) + 25\sin(\tfrac{x}{5}) +C$
 
karush said:
$\large{242.8.2.8}$
$\displaystyle
I_8=\int(x)\sin{\left(\frac{x}{5}\right)} \, dx=
25\sin\left(\dfrac{x}{5}\right)-5\cos\left(\dfrac{x}{5}\right)x$
IBP
$\displaystyle \begin{array}{cccc}
u \,=\, x && dv \,=\,\sin(\frac{x}{5})\,dx \\
du \,=\,dx && v \,=\,-5\cos(\frac{x}{5}) \end{array}$
$\displaystyle \;\int u\,dv \;=\;uv - \int v\,du$
$\displaystyle I_8 \;=\;(x)\left(-5\cos(\tfrac{x}{5})\right) - \int\left(-5\cos(\tfrac{x}{5})\right)\,dx$
$\displaystyle I_8 \;=\;-5x\cos(\tfrac{x}{5}) + 5\int\cos(\tfrac{x}{5})\,dx$
$\displaystyle I_8 \;=\;-5x\cos(\tfrac{x}{5}) + 25\sin(\tfrac{x}{5}) +C$
Looks good. (Nod)

-Dan
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K