242.8.2.8 int x sin (x/5) dx. IBP

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx Sin
Click For Summary

Discussion Overview

The discussion revolves around the integral $\int x \sin\left(\frac{x}{5}\right) \, dx$, focusing on the application of integration by parts (IBP) to solve it. Participants explore different approaches and steps involved in the integration process.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Homework-related

Main Points Raised

  • Some participants present the integral and propose using integration by parts, defining $u = x$ and $dv = \sin\left(\frac{x}{5}\right) dx$.
  • One participant calculates the integral as $I_8 = -5x\cos\left(\frac{x}{5}\right) + 25\sin\left(\frac{x}{5}\right) + C$ after applying IBP.
  • Another participant reiterates the steps of integration by parts, confirming the same result as above.
  • There is a suggestion to continue the integration process after the initial steps are laid out.
  • One participant expresses satisfaction with the derived result, indicating it looks good.

Areas of Agreement / Disagreement

Participants generally agree on the steps taken in the integration process and arrive at the same result, though there is no explicit consensus on the completeness of the solution or any further steps that may be necessary.

Contextual Notes

Some steps in the integration process may depend on assumptions about the handling of constants and integration techniques, which are not fully explored in the discussion.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\large{242.8.2.8}$
$\displaystyle
I_8=\int(x)\sin{\left(\frac{x}{5}\right)} \, dx=
25\sin\left(\dfrac{x}{5}\right)-5\cos\left(\dfrac{x}{5}\right)x$
$$\begin{align}
u&=\frac{x}{5} &5du&=dx &x&=5u \\
\end{align}\\
$$ thus
$\displaystyle
I_8=25\int u\sin{u} \, du$
IBP
$$\begin{align}
u_1&=u &dv_1&= \sin{u} \, du \\
du_1&=du &v_1&=-\cos{u}
\end{align}$$
Continue?
 
Physics news on Phys.org
karush said:
$\large{242.8.2.8}$
$\displaystyle
I_8=\int(x)\sin{\left(\frac{x}{5}\right)} \, dx=
25\sin\left(\dfrac{x}{5}\right)-5\cos\left(\dfrac{x}{5}\right)x$
$$\begin{align}
u&=\frac{x}{5} &5du&=dx &x&=5u \\
\end{align}\\
$$ thus
$\displaystyle
I_8=25\int u\sin{u} \, du$
IBP
$$\begin{align}
u_1&=u &dv_1&= \sin{u} \, du \\
du_1&=du &v_1&=-\cos{u}
\end{align}$$
Continue?
Integration by parts.
[math]I_8 = -u~cos(u) + \int cos(u)~du[/math]

-Dan
 
karush said:
$\displaystyle I \;=\; \int(x)\sin{\left(\tfrac{x}{5}\right)} \, dx$
\text{Integration by parts: }\;\int u\,dv \;=\;uv - \int v\,du

. . \begin{array}{cccc}<br /> u \,=\, x &amp;&amp; dv \,=\,\sin(\frac{x}{5})\,dx \\<br /> du \,=\,dx &amp;&amp; v \,=\,-5\cos(\frac{x}{5}) \end{array}

I \;=\;(x)\left(-5\cos(\tfrac{x}{5})\right) - \int\left(-5\cos(\tfrac{x}{5})\right)\,dx

I \;=\;-5x\cos(\tfrac{x}{5}) + 5\int\cos(\tfrac{x}{5})\,dx

I \;=\;-5x\cos(\tfrac{x}{5}) + 25\sin(\tfrac{x}{5}) +C

 
$\large{242.8.2.8}$
$\displaystyle
I_8=\int(x)\sin{\left(\frac{x}{5}\right)} \, dx=
25\sin\left(\dfrac{x}{5}\right)-5\cos\left(\dfrac{x}{5}\right)x$
IBP
$\displaystyle \begin{array}{cccc}
u \,=\, x && dv \,=\,\sin(\frac{x}{5})\,dx \\
du \,=\,dx && v \,=\,-5\cos(\frac{x}{5}) \end{array}$
$\displaystyle \;\int u\,dv \;=\;uv - \int v\,du$
$\displaystyle I_8 \;=\;(x)\left(-5\cos(\tfrac{x}{5})\right) - \int\left(-5\cos(\tfrac{x}{5})\right)\,dx$
$\displaystyle I_8 \;=\;-5x\cos(\tfrac{x}{5}) + 5\int\cos(\tfrac{x}{5})\,dx$
$\displaystyle I_8 \;=\;-5x\cos(\tfrac{x}{5}) + 25\sin(\tfrac{x}{5}) +C$
 
karush said:
$\large{242.8.2.8}$
$\displaystyle
I_8=\int(x)\sin{\left(\frac{x}{5}\right)} \, dx=
25\sin\left(\dfrac{x}{5}\right)-5\cos\left(\dfrac{x}{5}\right)x$
IBP
$\displaystyle \begin{array}{cccc}
u \,=\, x && dv \,=\,\sin(\frac{x}{5})\,dx \\
du \,=\,dx && v \,=\,-5\cos(\frac{x}{5}) \end{array}$
$\displaystyle \;\int u\,dv \;=\;uv - \int v\,du$
$\displaystyle I_8 \;=\;(x)\left(-5\cos(\tfrac{x}{5})\right) - \int\left(-5\cos(\tfrac{x}{5})\right)\,dx$
$\displaystyle I_8 \;=\;-5x\cos(\tfrac{x}{5}) + 5\int\cos(\tfrac{x}{5})\,dx$
$\displaystyle I_8 \;=\;-5x\cos(\tfrac{x}{5}) + 25\sin(\tfrac{x}{5}) +C$
Looks good. (Nod)

-Dan
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K