242.8.7.64 int (x^4+1)/(x^3+9x) dx

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx
Click For Summary
SUMMARY

The integral evaluation of \( I_{64} = \int \frac{x^4+1}{x^3+9x} \, dx \) results in the expression \( \frac{\ln\left(|x|\right)}{9} - \frac{41\ln\left(x^2+9\right)}{9} + \frac{x^2}{2} \). The expansion of the integrand was achieved through partial fraction decomposition, leading to the formulation \( \frac{9x^2-1}{x^3+9x} = -\frac{1}{9x} + \frac{82x}{9(x^2+9)} \). This method effectively simplifies the integral into manageable components for evaluation.

PREREQUISITES
  • Understanding of integral calculus and techniques for evaluating integrals.
  • Familiarity with partial fraction decomposition in algebra.
  • Knowledge of logarithmic properties and their application in integration.
  • Experience with symbolic computation tools, such as TI calculators.
NEXT STEPS
  • Study advanced techniques in integral calculus, focusing on partial fraction decomposition.
  • Explore the application of logarithmic integration in complex functions.
  • Learn to use symbolic computation tools like Mathematica or TI calculators for integral evaluations.
  • Investigate the properties of rational functions and their integration techniques.
USEFUL FOR

Mathematics students, calculus instructors, and anyone interested in advanced integral evaluation techniques and algebraic manipulation.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\text{206.8.7.64}$
$\text{Given and evaluation}$
$$\displaystyle
I_{64}=\int \frac{x^4+1}{x^3+9x} \, dx
=\dfrac{\ln\left(\left|x\right|\right)}{9}-\dfrac{41\ln\left(x^2+9\right)}{9}+\dfrac{x^2}{2}$$
$\text{expand (via TI)}$
$$I_{64}= \frac{1}{9}\int\frac{1 }{x} \, dx
-\frac{82}{9}\int\frac{x}{(x^2+9)}\, dx
+\int x \, dx $$
$\text{OK I can see how the integral was evaluted }$
$\text{just don't see how the expansion was done?}$
☕
 
Physics news on Phys.org
I would write:

$$\frac{x^4+1}{x^3+9x}=\frac{x^4+9x^2+1-9x^2}{x^3+9x}=\frac{x(x^3+9x)+1-9x^2}{x^3+9x}=x-\frac{9x^2-1}{x^3+9x}$$

Now, using partial fractions:

$$\frac{9x^2-1}{x^3+9x}=\frac{A}{x}+\frac{Bx+C}{x^2+9}$$

$$9x^2-1=A(x^2+9)+(Bx+C)x=(A+B)x^2+Cx+9A$$

Equating coefficients, we obtain:

$$A+B=9$$

$$C=0$$

$$9A=-1\implies A=-\frac{1}{9}\implies B=\frac{82}{9}$$

Hence:

$$\frac{9x^2-1}{x^3+9x}=-\frac{1}{9x}+\frac{82x}{9(x^2+9)}$$

Putting it all together:

$$\frac{x^4+1}{x^3+9x}=x+\frac{1}{9x}-\frac{82x}{9(x^2+9)}$$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K