MHB 242.8.7.64 int (x^4+1)/(x^3+9x) dx

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx
Click For Summary
The integral I_{64} evaluates to (ln|x|)/9 - (41ln(x^2+9))/9 + x^2/2. The discussion focuses on the method of expanding the integrand (x^4 + 1)/(x^3 + 9x) using algebraic manipulation and partial fractions. The expression is rewritten to separate terms, leading to the identification of coefficients for A, B, and C in the partial fraction decomposition. The final result combines these components to simplify the original integrand. The overall process illustrates the steps taken to evaluate the integral effectively.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\text{206.8.7.64}$
$\text{Given and evaluation}$
$$\displaystyle
I_{64}=\int \frac{x^4+1}{x^3+9x} \, dx
=\dfrac{\ln\left(\left|x\right|\right)}{9}-\dfrac{41\ln\left(x^2+9\right)}{9}+\dfrac{x^2}{2}$$
$\text{expand (via TI)}$
$$I_{64}= \frac{1}{9}\int\frac{1 }{x} \, dx
-\frac{82}{9}\int\frac{x}{(x^2+9)}\, dx
+\int x \, dx $$
$\text{OK I can see how the integral was evaluted }$
$\text{just don't see how the expansion was done?}$
☕
 
Physics news on Phys.org
I would write:

$$\frac{x^4+1}{x^3+9x}=\frac{x^4+9x^2+1-9x^2}{x^3+9x}=\frac{x(x^3+9x)+1-9x^2}{x^3+9x}=x-\frac{9x^2-1}{x^3+9x}$$

Now, using partial fractions:

$$\frac{9x^2-1}{x^3+9x}=\frac{A}{x}+\frac{Bx+C}{x^2+9}$$

$$9x^2-1=A(x^2+9)+(Bx+C)x=(A+B)x^2+Cx+9A$$

Equating coefficients, we obtain:

$$A+B=9$$

$$C=0$$

$$9A=-1\implies A=-\frac{1}{9}\implies B=\frac{82}{9}$$

Hence:

$$\frac{9x^2-1}{x^3+9x}=-\frac{1}{9x}+\frac{82x}{9(x^2+9)}$$

Putting it all together:

$$\frac{x^4+1}{x^3+9x}=x+\frac{1}{9x}-\frac{82x}{9(x^2+9)}$$
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
12
Views
3K