MHB 242.8.7.64 int (x^4+1)/(x^3+9x) dx

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx
Click For Summary
The integral I_{64} evaluates to (ln|x|)/9 - (41ln(x^2+9))/9 + x^2/2. The discussion focuses on the method of expanding the integrand (x^4 + 1)/(x^3 + 9x) using algebraic manipulation and partial fractions. The expression is rewritten to separate terms, leading to the identification of coefficients for A, B, and C in the partial fraction decomposition. The final result combines these components to simplify the original integrand. The overall process illustrates the steps taken to evaluate the integral effectively.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\text{206.8.7.64}$
$\text{Given and evaluation}$
$$\displaystyle
I_{64}=\int \frac{x^4+1}{x^3+9x} \, dx
=\dfrac{\ln\left(\left|x\right|\right)}{9}-\dfrac{41\ln\left(x^2+9\right)}{9}+\dfrac{x^2}{2}$$
$\text{expand (via TI)}$
$$I_{64}= \frac{1}{9}\int\frac{1 }{x} \, dx
-\frac{82}{9}\int\frac{x}{(x^2+9)}\, dx
+\int x \, dx $$
$\text{OK I can see how the integral was evaluted }$
$\text{just don't see how the expansion was done?}$
☕
 
Physics news on Phys.org
I would write:

$$\frac{x^4+1}{x^3+9x}=\frac{x^4+9x^2+1-9x^2}{x^3+9x}=\frac{x(x^3+9x)+1-9x^2}{x^3+9x}=x-\frac{9x^2-1}{x^3+9x}$$

Now, using partial fractions:

$$\frac{9x^2-1}{x^3+9x}=\frac{A}{x}+\frac{Bx+C}{x^2+9}$$

$$9x^2-1=A(x^2+9)+(Bx+C)x=(A+B)x^2+Cx+9A$$

Equating coefficients, we obtain:

$$A+B=9$$

$$C=0$$

$$9A=-1\implies A=-\frac{1}{9}\implies B=\frac{82}{9}$$

Hence:

$$\frac{9x^2-1}{x^3+9x}=-\frac{1}{9x}+\frac{82x}{9(x^2+9)}$$

Putting it all together:

$$\frac{x^4+1}{x^3+9x}=x+\frac{1}{9x}-\frac{82x}{9(x^2+9)}$$
 

Similar threads

Replies
4
Views
1K
Replies
4
Views
2K
Replies
3
Views
2K
Replies
5
Views
1K
Replies
6
Views
3K
Replies
2
Views
2K
Replies
1
Views
2K
Replies
5
Views
3K