242.q2.3a Int_2^4 dx/[x( ln x)^2]

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Ln
Click For Summary
SUMMARY

The integral $\int_2^4 \frac{dx}{x(\ln x)^2}$ can be solved using the substitution $u = \ln x$, leading to the transformed integral $\int_{\ln 2}^{\ln 4} \frac{1}{u^2} du$. The final result is $\frac{1}{\ln 2} - \frac{1}{\ln 4}$, which simplifies to $\frac{1}{2\ln 2}$. It is crucial to change the limits of integration when performing substitutions in definite integrals.

PREREQUISITES
  • Understanding of definite integrals
  • Knowledge of substitution methods in calculus
  • Familiarity with logarithmic functions
  • Ability to manipulate limits of integration
NEXT STEPS
  • Study the method of substitution in calculus
  • Learn about the properties of logarithmic functions
  • Explore advanced integration techniques, including integration by parts
  • Practice solving definite integrals with variable substitutions
USEFUL FOR

Students studying calculus, educators teaching integration techniques, and anyone looking to enhance their problem-solving skills in mathematical analysis.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\Large{242.Q2.3a} \\
\text{find the integral} \\
\displaystyle
\int_2^4 \frac{dx}{x( ln\, x)^2} $
 
Last edited:
Physics news on Phys.org
Re: 242.q2.3a Int_2^4 dx/(x ln x)^2 dx

Where did you get this question?
 
Re: 242.q2.3a Int_2^4 dx/(x ln x)^2 dx

karush said:
$\Large{242.Q2.3a} \\
\text{find the integral} \\
\displaystyle
\int_2^4 \frac{dx}{x( ln\, x)^2} dx$
Yes this has 2 dx so ??
One problem is that you have too many "dx"s. :)

Hint: Do you know of a relationship between ln(x) and 1/x?

-Dan
 
Re: 242.q2.3a Int_2^4 dx/(x ln x)^2 dx

karush said:
$\displaystyle \text{Find the integral: } \; \int_2^4 \frac{dx}{x(\ ln x)^2} $
$\displaystyle \text{We have: }\;\int (\ln x)^{-2\,}\frac{dx}{x} $

$\text{Let }u \,=\,\ln x \quad\Rightarrow\quad du \,=\,\frac{dx}{x}$

$\displaystyle \text{Substitute: }\;\int u^{-2}du$

$\text{Got it?}$
 
Re: 242.q2.3a Int_2^4 dx/(x ln x)^2 dx

$\Large{242.Q2.3a} \\
\text{find the integral} $
$$\displaystyle
I_{3a}=\int_2^4 \frac{dx}{x( ln\, x)^2}=\ln\left({2}\right) \\
u=\ln\left({x}\right) \ \ \ du=\frac{1}{x}\, dx $$
$\text{then} $
$$\displaystyle
I_{3a}
=\int_2^4\frac{1}{{u}^{2}}\, du
= \left[-\frac{1}{u}\right]_2^4$$
So far??
 
Re: 242.q2.3a Int_2^4 dx/(x ln x)^2 dx

When you use a substitution in a definite integral, you need to not only rewrite the integrand and differential in terms of the new variable, but you also need to change the limits of integration in accordance with your substitution. :)
 
Re: 242.q2.3a Int_2^4 dx/(x ln x)^2 dx

ok i keep forgetting to do so
 
Re: 242.q2.3a Int_2^4 dx/(x ln x)^2 dx

karush said:
$\Large{242.Q2.3a} \\
\text{find the integral} $
$$\displaystyle
I_{3a}=\int_2^4 \frac{dx}{x( ln\, x)^2}=\ln\left({2}\right) \\
u=\ln\left({x}\right) \ \ \ du=\frac{1}{x}\, dx $$
$\text{integrate and back substitute } u=ln(x)$
$$\displaystyle
I_{3a}
=\int_{\ln{2}}^{2\ln{2}}\frac{1}{{u}^{2}}\, du
= \left[-\frac{1}{\ln{x}}\right]
_{\ln\left({2}\right)}^{2\ln\left({2}\right)}$$
You didn't back substitute in you last step. It's [math]\left[-\frac{1}{\ln{x}}\right]
_{2}^{4}[/math]

-Dan
 
Re: 242.q2.3a Int_2^4 dx/(x ln x)^2 dx

$\Large{242.Q2.3a} \\
\text{find the integral} $
$$\displaystyle
I_{3a}=\int_2^4 \frac{dx}{x( ln\, x)^2}=\ln\left({2}\right) \\
u=\ln\left({x}\right) \ \ \ du=\frac{1}{x}\, dx $$
$\text{back substitute } u=ln(x)$
$$\displaystyle
I_{3a}
=\int_{\ln{2}}^{\ln{4}}\frac{1}{{u}^{2}}\, du
= \left[-\frac{1}{\ln{x}}\right]
_{2}^{4}=
\frac{1}{\ln 2}-\frac{1}{\ln 4}$$
 
  • #10
Re: 242.q2.3a Int_2^4 dx/(x ln x)^2 dx

karush said:
$\Large{242.Q2.3a} \\
\text{find the integral} $
$$\displaystyle
I_{3a}=\int_2^4 \frac{dx}{x( ln\, x)^2}=\ln\left({2}\right) \\
u=\ln\left({x}\right) \ \ \ du=\frac{1}{x}\, dx $$
$\text{then} $
$$\displaystyle
I_{3a}
=\int_2^4\frac{1}{{u}^{2}}\, du
= \left[-\frac{1}{u}\right]_2^4$$
So far??

The only thing you neglected in this approach was to change the limits...

$$I=\int_{\ln(2)}^{\ln(4)}\frac{1}{u^2}\, du=-\left[\frac{1}{u}\right]_{\ln(2)}^{\ln(4)}=\frac{1}{\ln(2)}-\frac{1}{\ln(4)}=\frac{1}{2\ln(2)}$$
 
  • #11
Re: 242.q2.3a Int_2^4 dx/(x ln x)^2 dx

MarkFL said:
The only thing you neglected in this approach was to change the limits...

$$I=\int_{\ln(2)}^{\ln(4)}\frac{1}{u^2}\, du=-\left[\frac{1}{u}\right]_{\ln(2)}^{\ln(4)}=\frac{1}{\ln(2)}-\frac{1}{\ln(4)}=\frac{1}{2\ln(2)}$$

:cool:
 
  • #12
Re: 242.q2.3a Int_2^4 dx/(x ln x)^2 dx

That was quite tricky, but solved.
 
  • #13
Re: 242.q2.3a Int_2^4 dx/(x ln x)^2 dx

I notice that the integral in the title of this thread is \int_2^4\frac{1}{(x ln(x))^2}dx[/int] which is quite a different problem!
 
  • #14
Re: 242.q2.3a Int_2^4 dx/(x ln x)^2 dx

HallsofIvy said:
I notice that the integral in the title of this thread is $$\int_2^4\frac{1}{(x ln(x))^2}dx$$ which is quite a different problem!

Thanks for the catch!...I have edited the thread title accordingly. :D
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 6 ·
Replies
6
Views
1K