29.1 give a system of fundamental solutions

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Fundamental System
Click For Summary

Discussion Overview

The discussion revolves around determining the general solution and a system of fundamental solutions for a system of differential equations. Participants explore various techniques such as diagonalization, diagonalizable matrices, and triangular forms.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant proposes a system of differential equations and sets up a corresponding matrix, questioning the differences between diagonal and diagonalizable matrices.
  • Another participant disagrees with the initial assessment of the matrix being diagonal, stating it appears triangular due to an off-diagonal element.
  • A later post introduces the property of diagonal matrices, suggesting that the matrix should be of a specific form to match the system of equations.
  • Another participant questions how the proposed matrix relates to the variables in the system, expressing confusion over the term "decoupled."
  • A subsequent reply clarifies the concept of decoupled differential equations, explaining that the dependent variables do not appear in each other's equations, and provides the general solutions for the system.

Areas of Agreement / Disagreement

Participants express differing views on the nature of the matrix associated with the system of equations, with some asserting it is triangular while others argue it should be diagonal. The discussion remains unresolved regarding the correct characterization of the matrix.

Contextual Notes

There are limitations in the discussion regarding the assumptions made about the matrix forms and the definitions of diagonal and diagonalizable matrices. The relationship between the differential equations and the matrix representation is also not fully clarified.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
determine their general solution and give a system of fundamental solutions.
use the different techniques of diagonal, diagonalizedable, or triangular.
$\begin{cases}
y'_1 & =3y_1 \\ y'_2 & =2y_2\end{cases}$
set matrix
$A= \begin{pmatrix}0 &3\\0 &2\end{pmatrix}$
then find eigenvaluesok just seeing if i am starting out correctly with this..
not sure what the difference is between diagonal and diagonalizedable? but it looks diagonal
 
Physics news on Phys.org
karush said:
determine their general solution and give a system of fundamental solutions.
use the different techniques of diagonal, diagonalizedable, or triangular.
$\begin{cases}
y'_1 & =3y_1 \\ y'_2 & =2y_2\end{cases}$
set matrix
$A= \begin{pmatrix}0 &3\\0 &2\end{pmatrix}$
then find eigenvaluesok just seeing if i am starting out correctly with this..
not sure what the difference is between diagonal and diagonalizedable? but it looks diagonal
It doesn't look diagonal to me, because of the $3$ that is off the diagonal. But it does look triangular.
 
Opalg said:
It doesn't look diagonal to me, because of the $3$ that is off the diagonal. But it does look triangular.

ok I don't know for sure but doesn't a diagonal have the property
$A=PDP^{-1}$

which I think it does
 
Your DE doesn't match the matrix $A.$ Your system of DE's is actually de-coupled, as you've written it; for such a system, I would expect $A$ to be diagonal. So the matrix $A$ which matches your system would be
$$A=\left[\begin{matrix}3 &0 \\ 0 &2\end{matrix}\right].$$
 
how would that fit to $y_1$ and $y_2$ since there is no $x_i$

not sure what you mean by decoupled
 
A system of equations like yours:
\begin{align*}
y_1'&=3y_1 \\
y_2'&=2y_2
\end{align*}
is very often written (with an eye towards using matrix methods) in the form $\mathbf{y}'=A\mathbf{y},$ where $A$ is a $2\times 2$ matrix, and
$$\mathbf{y}=\left[\begin{matrix}y_1\\y_2\end{matrix}\right].$$
So, if you compare $\mathbf{y}'=A\mathbf{y}$ with your system, it appears that $A$ must be
$$A=\left[\begin{matrix}3&0\\0&2\end{matrix}\right].$$
The lack of $x_i$ is not a problem here.

The system is called "decoupled" when the dependent variables don't show up in each others' DE's. So, in the equation $y_1'=3y_1,$ there's no $y_2,$ and in the equation $y_2'=2y_2,$ there's no $y_1.$ De-coupled DE's are very often considerably simpler to solve, since you can basically solve each one separately. Indeed, you can simply write down by inspection the solution to this system:
\begin{align*}
y_1&=C_1 e^{3x}\\
y_2&=C_2 e^{2x},
\end{align*}
assuming $x$ is the independent variable.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K