mathmari
Gold Member
MHB
- 4,984
- 7
For the last map :
Let $b_2=\begin{pmatrix}0 \\ 1\end{pmatrix}$, then $\gamma_{\mathcal{B}_1}(\phi_3(b_2))=\gamma_{\mathcal{B}_1}\begin{pmatrix}1 \\ 0\end{pmatrix}=\begin{pmatrix}1 \\ 0\end{pmatrix}$.
So we get \begin{equation*}\mathcal{M}_{\mathcal{B}_1}(\phi_3)=\begin{pmatrix}1 & 1 \\ 0 & 0\end{pmatrix}\end{equation*} which is an upper triangular matrix.There is no basis such that $\mathcal{M}_{\mathcal{B}_1}(\phi_3)$ is a diagonal matrix, because the element at the second column and first row has to be non zero to get linearly independent vectors, right?
:unsure:
Let $b_2=\begin{pmatrix}0 \\ 1\end{pmatrix}$, then $\gamma_{\mathcal{B}_1}(\phi_3(b_2))=\gamma_{\mathcal{B}_1}\begin{pmatrix}1 \\ 0\end{pmatrix}=\begin{pmatrix}1 \\ 0\end{pmatrix}$.
So we get \begin{equation*}\mathcal{M}_{\mathcal{B}_1}(\phi_3)=\begin{pmatrix}1 & 1 \\ 0 & 0\end{pmatrix}\end{equation*} which is an upper triangular matrix.There is no basis such that $\mathcal{M}_{\mathcal{B}_1}(\phi_3)$ is a diagonal matrix, because the element at the second column and first row has to be non zero to get linearly independent vectors, right?
:unsure:
Last edited by a moderator: