Give a basis to get the specific matrix M

Click For Summary

Discussion Overview

The discussion revolves around finding specific bases for linear transformations in \(\mathbb{R}^2\) such that the corresponding matrices are either upper triangular or diagonal. Participants explore the implications of these transformations and the conditions required for the matrices to take on these forms.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant provides specific bases for three linear maps \(\phi_1\), \(\phi_2\), and \(\phi_3\) and calculates the corresponding matrices, suggesting conditions for upper triangular forms.
  • Another participant questions the definition of \(M_B(\phi)\) and suggests that it should involve the inverse of the basis matrix, raising concerns about the identity transformation's representation.
  • A later reply proposes that diagonal matrices can be found by calculating eigenvalues and eigenvectors, noting that diagonal matrices are also upper triangular.
  • Another participant discusses the general definitions of \(M_B^B(\phi_a)\) and \(M_B^E(\text{id})\), providing an example with specific vectors and applying Gaussian elimination to derive a matrix.

Areas of Agreement / Disagreement

Participants express differing views on the definition and calculation of transformation matrices, particularly regarding the identity transformation and the conditions for diagonalization. There is no consensus on the correct approach or definitions.

Contextual Notes

Some assumptions about the linear maps and their properties may be implicit, and the discussion does not resolve the mathematical steps involved in deriving the transformation matrices.

  • #31
For the last map :

Let $b_2=\begin{pmatrix}0 \\ 1\end{pmatrix}$, then $\gamma_{\mathcal{B}_1}(\phi_3(b_2))=\gamma_{\mathcal{B}_1}\begin{pmatrix}1 \\ 0\end{pmatrix}=\begin{pmatrix}1 \\ 0\end{pmatrix}$.
So we get \begin{equation*}\mathcal{M}_{\mathcal{B}_1}(\phi_3)=\begin{pmatrix}1 & 1 \\ 0 & 0\end{pmatrix}\end{equation*} which is an upper triangular matrix.There is no basis such that $\mathcal{M}_{\mathcal{B}_1}(\phi_3)$ is a diagonal matrix, because the element at the second column and first row has to be non zero to get linearly independent vectors, right?


:unsure:
 
Last edited by a moderator:
Physics news on Phys.org
  • #32
mathmari said:
\begin{align*}\phi_3:\mathbb{R}^2\rightarrow \mathbb{R}, \ \begin{pmatrix}x\\ y\end{pmatrix} \mapsto \begin{pmatrix}y\\ 0\end{pmatrix} \end{align*}
1. Give (if possible) for each $i\in \{1,2,3\}$ a Basis $B_i$ of $\mathbb{R}^2$ such that $M_{B_i}(\phi_i)$ an upper triangular matrix.
2. Give (if possible) for each $i\in \{1,2,3\}$ a Basis $B_i$ of $\mathbb{R}^2$ such that $M_{B_i}(\phi_i)$ an diagonal matrix.
mathmari said:
Let $b_2=\begin{pmatrix}0 \\ 1\end{pmatrix}$, then $\gamma_{\mathcal{B}_3}(\phi_3(b_2))=\gamma_{\mathcal{B}_3}\begin{pmatrix}1 \\ 0\end{pmatrix}=\begin{pmatrix}1 \\ 0\end{pmatrix}$.
So we get \begin{equation*}\mathcal{M}_{\mathcal{B}_3}(\phi_3)=\begin{pmatrix}1 & 1 \\ 0 & 0\end{pmatrix}\end{equation*} which is an upper triangular matrix.
I've taken the liberty to change $\mathcal{B}_1$ into $\mathcal{B}_3$ in the above quote.
That was what was intended wasn't it? :unsure:

The eigenvalue was $0$ wasn't it?
Shouldn't we have $u_{11}=0$ then?
I don't think we have the correct $\mathcal{M}_{\mathcal{B}_3}(\phi_3)$. (Shake)

mathmari said:
There is no basis such that $\mathcal{M}_{\mathcal{B}_3}(\phi_3)$ is a diagonal matrix, because the element at the second column and first row has to be non zero to get linearly independent vectors, right?
Correct. (Nod)
 
Last edited:
  • #33
Klaas van Aarsen said:
The eigenvalue was $0$ wasn't it?
Should we have $u_{11}=0$ then?
I don't think we have the correct $\mathcal{M}_{\mathcal{B}_3}(\phi_3)$. (Shake)

Ahh yes, we have \begin{equation*}\mathcal{M}_{\mathcal{B}_3}(\phi_3)=\begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix}\end{equation*} :unsure:
 
  • #34
mathmari said:
Ahh yes, we have \begin{equation*}\mathcal{M}_{\mathcal{B}_3}(\phi_3)=\begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix}\end{equation*}
Right. (Nod)
 
  • #35
Klaas van Aarsen said:
Right. (Nod)

Thank you ! 👌
 

Similar threads

Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
4K