MHB 3.13 Compute the orders of the following groups:

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Groups
Click For Summary
The discussion focuses on computing the orders of the groups U(3), U(4), U(12), U(5), and U(15) using the properties of the Euler's totient function, φ(n). Participants clarify that the order of U(n) is determined by φ(n), with specific formulas for prime and composite numbers. There is a query about the elements of U(12) and their orders, particularly regarding the pairs that sum to 12 and the significance of the order being 1 or 2. The conversation emphasizes the relationship between the orders of U(r), U(s), and U(rs), suggesting a conjecture based on the computed values. The thread concludes with a request for clarification on specific group elements and their orders.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
\nmh{837}
Compute the orders of the following groups: $U(3), U(4), U(12)$ and $U(3), U(5), U(15)$.
On the basis of your answers, make a conjecture about the relationship among $|U(r)|, |U(s)|$, and $|U(rs)|$.

ok I still don't have a clear idea on how to do this $ax=1$
$U(3)=3$
 
Last edited:
Physics news on Phys.org
karush said:
Compute the orders of the following groups: $U(3), U(4), U(12)$ and $U(3), U(5), U(15)$.
On the basis of your answers, make a conjecture about the relationship among $|U(r)|, |U(s)|$, and $|U(rs)|$.

ok I still don't have a clear idea on how to do this $ax=1$
$U(3)=3$

If I'm not mistaken, the order of $U(n)$ is $\varphi(n)$, which is the Euler's totient function. If $n$ is prime, then $\varphi(n) = n-1$. If $p$ is prime and $n=p^k$, then $\varphi(n) = p^{k-1}(p-1)$. Also, if $\gcd(m,n)=1$, $\varphi(mn) = \varphi(m)\varphi(n)$. Using these properties of $\varphi(n)$, you should be able to find the orders. I leave it to you to find the orders of the groups and make a conjecture about how $|U(rs)|$, $|U(r)|$ and $|U(s)|$ are related.

I hope this helps!
 
View attachment 8397

ok I found this for u(12)
where does {1,5,7,11} come from? I see that 1+11=12 and 5+7=12
also "every element of U(12) has order of 1 or 2" where does 2 come from

also from this does it mean that
U(3)={1,2} and u(5)={1,4}
 

Attachments

  • 12.PNG
    12.PNG
    6.6 KB · Views: 181
https://dl.orangedox.com/GXEVNm73NxaGC9F7Cy

SSCwt.png
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 26 ·
Replies
26
Views
753
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K