MHB 311.3.2.16 Find the determinant with variables a b c d e f g h i

Click For Summary
The discussion focuses on finding the determinant of a specific 3x3 matrix involving variables a, b, c, d, e, f, g, h, and i, with a factor of 5 in the last row. It confirms that the determinant can be simplified by factoring out the 5, resulting in a scalar multiplication of the determinant of a reduced matrix. Participants clarify that while there are multiple methods to row reduce a matrix, the reduced row echelon form (RREF) is unique. They emphasize that row operations affect the determinant in specific ways, such as multiplying by -1 when swapping rows or dividing when factoring out constants. The conversation concludes with the understanding that complex numbers can be included in matrices, and the determinant's properties are crucial for accurate calculations.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{311.3.2.16}$
Find the determinants where:
$\left|\begin{array}{rrr}a&b&c\\ d&e&f\\5g&5h&5i\end{array}\right|
=a\left|\begin{array}{rrr}e&f \\5h&5i\end{array}\right|
-b\left|\begin{array}{rrr}d&f \\5g&5i\end{array}\right|
+c\left|\begin{array}{rrr}d&e\\5g&5h\end{array}\right|=$

ok before I proceed on
just want see if this is correct
not sure why they thru the 5's in there
 
Physics news on Phys.org
This is correct, though I don't like the use of the "i." (Complex numbers and all.)

If you want to get rid of the 5's:
[math]\left | \begin{matrix} a & b & c \\ d & e & f \\ 5g & 5h & 5i \end{matrix} \right | = 5 \left | \begin{matrix} a & b & c \\ d & e & f \\ g & h & i \end{matrix} \right | [/math]

-Dan
 
yeah, however I didn't know complex numbers were used in an matrix

$
a\left|\begin{array}{rrr}e&f \\5h&5i\end{array}\right|
-b\left|\begin{array}{rrr}d&f \\5g&5i\end{array}\right|
+c\left|\begin{array}{rrr}d&e\\5g&5h\end{array}\right|$
$=a(e5i-5hf)-b(d5i-5gf)+c(d5h-5ge)$
distirbute
$ae5i-a5hf-bd5i+b5gf+cd5d-c5ge$
rewrite
$5(aei-a5f-bdi+bgf+cdd-cge)$
hopefully,,, I quess the purpose of this was to show that 5 is a scaler
no book answer so not sure how to cross check this
 
thot I would throw in this question true or false

In some cases, a matrix may be row reduced to more than one matrix in reduced echelon form, using different sequences of row

ok but isn't there just one form of RREF possoble if can be derived? there are multiple ways to reduce it but only one outcome
 
First, any numbers, including complex numbers, can appear in a matrix.

Second, row reduction of a matrix does NOT preserve its determinant. For example, factoring a number out of an entire row (or column) divides the determinant by that number. That is why, when Topsquark factored the "5"out of the bottom row, he multiplied the determinant by 5.

Swapping two rows, multiplies the determinant by -1.

Finally, adding a multiple of one row to another does not change the determinant.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K