B Can an Object with N Dimensions Exist in N-1 Dimensions?

  • B
  • Thread starter Thread starter duyix
  • Start date Start date
  • Tags Tags
    2d 3d Space
AI Thread Summary
An object with N dimensions cannot exist entirely in N-1 dimensions, as the fundamental properties of dimensions dictate that each dimension requires a corresponding degree of freedom. An infinitely flat object, such as a plane, is inherently two-dimensional and can be described by two non-parallel direction vectors, indicating it has only two degrees of freedom. Various mathematical results, including those related to embedding spaces, support the conclusion that higher-dimensional objects cannot be fully represented in lower-dimensional spaces. The discussion highlights the importance of understanding the definitions of dimensions and the implications of embedding in mathematical contexts. Overall, the consensus is that dimensionality is a strict constraint that cannot be bypassed.
duyix
Messages
1
Reaction score
1
I am concerned that this question may instead be a philosophical one although if it it mathematical, any insights would be very appreciated. The question is this; could an object of N dimensions exist entirely in N-1 dimensions? In other words, could an infinitely flat object have 3 degrees of freedom and also be able to fit entirely in 2D space? Thank you and please excuse any naivety
 
Mathematics news on Phys.org
duyix said:
The question is this; could an object of N dimensions exist entirely in N-1 dimensions?
No, it's not possible.

duyix said:
In other words, could an infinitely flat object have 3 degrees of freedom and also be able to fit entirely in 2D space? [\quote]
If by "infinitely flat object" you mean "a plane" it's already a two-dimensional object that can be determined by two nonparallel direction vectors. I.e., two degrees of freedom.
 
Last edited:
There are different definitions of the term Dimension. One of them is that of number of data points needed to fully describe every point in the n-th dimensional object. And that number is precisely n.
There are results to the effect that ##\mathbb R^{n+k} ; k >0 ##; k a positive Integer, cannot be embedded in ##\mathbb R^n ##. There are similar results for n-spheres ## S^n ##. that cannot be embedded in ## \mathbb R^n ## or lower IIRC, the main result is that of Borsuk -Ulam.

Edit: A 1-dimensional object embedded in n-space is describable as ##(f_1(x), f_2(x),...,f_n(x))##.
An m-dimensional object in k-space is describable as ## (f_1(x_1,..., x_m), f_2(x_1,x_2,..,x_m),,..,f_k(x_1,x_2,..,x_m) )##
 
Last edited:
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top