4-Current vector potential transformation under Gauge fixing

Click For Summary

Discussion Overview

The discussion revolves around the transformation of a vector potential under the Lorenz Gauge condition in the context of electromagnetism. Participants explore the implications of gauge transformations on the vector potential and the resulting equations, focusing on theoretical aspects and mathematical formulations.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents an initial vector potential and seeks to understand its transformation under the Lorenz Gauge, providing specific equations and expressing confusion about the implications of the transformation.
  • Another participant points out a correction regarding the form of the original gauge, indicating that it should involve a function of \(t+x\) rather than just \(t,x\).
  • A participant queries the notation used for the spacetime four-vector and requests clarification on standard conventions.
  • Further contributions detail the conventional form of the four-potential and how to express the Lorenz gauge condition mathematically, leading to an equation involving the d'Alembert operator.
  • There is a suggestion to solve the resulting equation using the retarded Green's function, indicating a method to address the gauge condition.

Areas of Agreement / Disagreement

Participants express differing views on the correct form of the vector potential and the implications of the Lorenz Gauge transformation. The discussion remains unresolved, with no consensus on the best approach to fix the gauge or the correctness of the transformations presented.

Contextual Notes

Limitations include potential misunderstandings in notation and the assumptions underlying the gauge transformations. The discussion does not resolve the mathematical steps involved in applying the Lorenz Gauge condition.

George444fg
Messages
25
Reaction score
4
I am given an initial vector potential let's say:

\begin{equation}
\vec{A} = \begin{pmatrix}
g(t,x)\\
0\\
0\\
g(t,x)\\
\end{pmatrix}
\end{equation}

And I would like to know how it will transform under the Lorenz Gauge transformation. I know that the Lorenz Gauge satisfy

\begin{equation}
\nabla \cdot A +\frac{1}{c^2}\frac{\partial\phi}{\partial t}=0
\end{equation}
So by applying a gauge transformation to my original expression I obtain that:
\begin{equation}
\tilde{\vec{A}} = \begin{pmatrix}
g(t,x)+\frac{\partial f}{\partial t}(t,x,y,z)\\
\frac{\partial f}{\partial x}(t,x,y,z)\\
\frac{\partial f}{\partial y}(t,x,y,z)\\
g(t,x)+\frac{\partial f}{\partial z}(t,x,y,z)\\
\end{pmatrix}
\end{equation}

That implies that:

\begin{equation}
\frac{1}{c^2}\frac{\partial g}{\partial t}+\frac{1}{c^2}\frac{\partial^2 f}{\partial^2 t}+\frac{\partial^2 f}{\partial^2 x}+\frac{\partial^2 f}{\partial^2 y}+\frac{\partial^2 f}{\partial^2 z} =0
\end{equation}

This expression doesn't help me a lot fixing my gauge. Except in the case that I take the f(t) but then $\partial_t{f} = g(t,x)+const$. But then $\tilde{A}$ gives back a 0 magnetic and electric field which is impossible. Probably I do somewhere a mistake, could you please help me out find out how to solve it?
 
  • Like
Likes   Reactions: Kulkarni Sourabh
Physics news on Phys.org
Here's the posting with LaTeX rendering:
George444fg said:
I am given an initial vector potential let's say:

$$\begin{equation}
\vec{A} = \begin{pmatrix}
g(t,x)\\
0\\
0\\
g(t,x)\\
\end{pmatrix}
\end{equation}$$

And I would like to know how it will transform under the Lorenz Gauge transformation. I know that the Lorenz Gauge satisfy

$$\begin{equation}
\nabla \cdot A +\frac{1}{c^2}\frac{\partial\phi}{\partial t}=0
\end{equation}$$
George444fg said:
So by applying a gauge transformation to my original expression I obtain that:
$$ \begin{equation}
\tilde{\vec{A}} = \begin{pmatrix}
g(t,x)+\frac{\partial f}{\partial t}(t,x,y,z)\\
\frac{\partial f}{\partial x}(t,x,y,z)\\
\frac{\partial f}{\partial y}(t,x,y,z)\\
g(t,x)+\frac{\partial f}{\partial z}(t,x,y,z)\\
\end{pmatrix}
\end{equation}$$

That implies that:

$$\begin{equation}
\frac{1}{c^2}\frac{\partial g}{\partial t}+\frac{1}{c^2}\frac{\partial^2 f}{\partial^2 t}+\frac{\partial^2 f}{\partial^2 x}+\frac{\partial^2 f}{\partial^2 y}+\frac{\partial^2 f}{\partial^2 z} =0
\end{equation}$$

This expression doesn't help me a lot fixing my gauge. Except in the case that I take the ##f(t)## but then ##\partial_t{f} = g(t,x)+const##. But then ##\tilde{A}## gives back a 0 magnetic and electric field which is impossible. Probably I do somewhere a mistake, could you please help me out find out how to solve it?
 
vanhees71 said:
Here's the posting with LaTeX rendering:
Its my bad, I meant that my original Gauge was in the form:

\begin{equation}
\vec{A} = \begin{pmatrix}
g(t+x)\\
0\\
0\\
g(t+x)\\
\end{pmatrix} = (\Phi, A)
\end{equation}

such that
\begin{equation}
\nabla \cdot A = g'(t+x) \Longrightarrow \Box \chi = g'(t+x)
\end{equation}

Now I apply the Lorenz Gauge to get a solution for A, in the Lorenz gauge.
 
Last edited:
I don't understand your notation. Please give your notation for the spacetime four-vector (standard is ##(x^{\mu})=(t,x,y,z)## (with ##c=1##) and also ##(A^{\mu})=(\Phi,\vec{A})##.
 
So to write down in the conventional form we have:

\begin{equation}
A^{\mu} = (f(t+y), f(t+y), 0, 0) = (\Phi, A)
\end{equation}
 
So you have
$$\partial_{\mu} A^{\mu}=\dot{f}(t+y)$$
If you now want a new four-potential such that the Lorenz gauge condition ##\partial_{\mu} A^{\prime '}=0## is fulfilled you make
$$A_{\mu}'=A_{\mu} + \partial_{\mu} \chi$$
and
$$\partial^{\mu} A_{\mu}' = \dot{f}(t+y)+\Box \chi=0 \; \Rightarrow \; \Box \chi=-\dot{f}(t+y),$$
which you can solve with, e.g., the retarded Green's function of the d'Alembert operator.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
814
  • · Replies 10 ·
Replies
10
Views
772
  • · Replies 5 ·
Replies
5
Views
993
  • · Replies 3 ·
Replies
3
Views
495
  • · Replies 1 ·
Replies
1
Views
683
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 29 ·
Replies
29
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
637