MHB -5.5 Solve the matrix equation AX=B to find x and y

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Matrix
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
2000
5.1 Suppose that we know that
$A^{-1}=\begin{bmatrix}1&3\\2&5 \end{bmatrix}$
Solve the matrix equation $AX=B$ to find $x$ and $y$ where
$X=\begin{bmatrix}x\\y \end{bmatrix}\& \quad B=\begin{bmatrix}1\\3 \end{bmatrix}$
ok well first find A
$A=\begin{bmatrix}1&3\\2&5 \end{bmatrix}^{-1}
=\left[ \begin{array}{rr|rr}1&3&1&0 \\ 2&5&0&1\end{array}\right]
=\left[ \begin{array}{rr|rr}1&0&-5&3 \\ 0&1&2&-1\end{array}\right]
=\left[ \begin{array}{rr} -5 & 3 \\ 2 & -1 \end{array} \right]$
then we have
$\left[ \begin{array}{rr} -5 & 3 \\ 2 & -1 \end{array} \right]
\begin{bmatrix}x\\y \end{bmatrix}
=\begin{bmatrix}1\\3 \end{bmatrix}$
ok just seeing If I am going the right direction on this .. if so the rest would be a simultaneous equation
 
Last edited:
Physics news on Phys.org
$AX=B$

$A^{-1}AX = A^{-1}B$

$X = A^{-1}B$

$\begin{bmatrix}
x \\ y
\end {bmatrix} = \begin{bmatrix}
1 & 3\\
2 & 5
\end{bmatrix} \cdot \begin{bmatrix}
1\\3
\end{bmatrix}$
 
ok so they both give the same answer as

$$x=10,\:y=17$$

so assume your equation is easier since you derive x and y directly?
 
karush said:
ok so they both give the same answer as

$$x=10,\:y=17$$

so assume your equation is easier since you derive x and y directly?

no need to determine matrix A
 
total awesome
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top