MHB 5.t.11 find x for the imaginary factors

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Factors Imaginary
Click For Summary
The discussion focuses on solving the equation f(x)=0 with roots 5+i and 5-i, highlighting errors in the original calculations. It points out that the function was incorrectly stated as quadratic when it should be cubic due to the missing factor (x-1). The correct expansion of the quadratic should yield a constant term of 24 instead of 26, impacting the quadratic formula's results. Additionally, the coefficient b was misidentified, leading to further calculation errors. Overall, the conversation emphasizes the importance of accurately stating the function and carefully executing algebraic operations.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textbf{5.t.11 }$ McKinley HS

Find x for $f(x)=0 \quad 5+i\quad 5-i\quad $
$\begin{array}{rl}
\textsf{factored} &f(x)=(x-1)[x-(5+i))(x-(5-i)]\\
\textsf{foil} &x^2-x(5+i)-x(5-i)+(5-i)^2\\
\textsf{expand} &x^2-5x-xi-5x+xi+25-2i+i^2 \\
\textsf{simplify} &x^2-10x+26\\
\textsf{observation } &(x-1)=0,\quad x=1\\
\textsf{quadratic formula} &=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\\
&=\dfrac{-(10)\pm\sqrt{(10)^2-4(1)(26)}}{2(1)}\\
&=\dfrac{-1\pm\sqrt{100-96}}{2}
=\dfrac{-10\pm2i}{2}=5\pm i
\end{array}$

can't seem to get the errors out of this;)
 
Mathematics news on Phys.org
karush said:
$\textbf{5.t.11 }$ McKinley HS

Find x for $f(x)=0 \quad 5+i\quad 5-i\quad $
$\begin{array}{rl}
\textsf{factored} &f(x)=(x-1)[x-(5+i))(x-(5-i)]\\
\textsf{foil} &x^2-x(5+i)-x(5-i)+(5-i)^2\\
\textsf{expand} &x^2-5x-xi-5x+xi+25-2i+i^2 \\
\textsf{simplify} &x^2-10x+26\\
\textsf{observation } &(x-1)=0,\quad x=1\\
\textsf{quadratic formula} &=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\\
&=\dfrac{-(10)\pm\sqrt{(10)^2-4(1)(26)}}{2(1)}\\
&=\dfrac{-1\pm\sqrt{100-96}}{2}
=\dfrac{-10\pm2i}{2}=5\pm i
\end{array}$

can't seem to get the errors out of this;)
First: Your problem didn't state that f(1) = 0.

Second: [math]f(x)=(x-1)[x-(5+i))(x-(5-i))][/math] gives the zeros 1, 5 - i, and 5 + i but is a cubic. You left out the (x - 1) factor and got a quadratic. You never stated f(x).

Third: The last term in the quadratic expansion is [math](5 + i)(5 - i) = 25 - i^2 = 26[/math]

(Fourth: 25 + i^2 = 25 - 1 = 24. Your wrote 26 in the quadratic formula, which is correct but your work would have set c = 24 and given the wrong answer.)

Fifth: b = -10, not b = 10.

Sixth: [math]100 - 4 \cdot 26 = -4[/math], not 4.

You need to drink more coffee when you are doing these.

-Dan
 
ok thanks
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K