When are isomorphic Hilbert spaces physically different?

A. Neumaier
Science Advisor
Insights Author
Messages
8,700
Reaction score
4,780
martinbn said:
What is a classical limit of a Hilbert space? And these Hilbert spaces, for one or two or many particles, are all isomorphic.

In quantum mechanics, a Hilbert space always means (in mathematical terms) a Hilbert space together with a distinguished irreducible unitary representation of a given Lie algebra of preferred observables on a common dense domain. Two Hilbert spaces are considered (physically) different if this representation is different (in the sense of non-isomorphic). The Lie algebra defines the kinematics of the system of interest. The semidirect product of ##(2dN+1)##-dimensional Heisenberg algebra with ##N## copies of ##so(d)## has a unique irreducible unitary representation, which defines the Hilbert space of ##N## particles in ##d##-dimensional Euclidean space.

Hilbert spaces don't have a classical limit. The latter is restricted to linear operators, which may have one. To have a classical limit, the above representation must depend on Planck's constant hbar in such a way that ##i[A,B]/\hbar## tends (at least for ##A## and ##B## in the Lie algebra of preferred observables) to a finite limit ##\{B,A\}##, which represents a Poisson bracket.
 
Last edited:
Physics news on Phys.org
A. Neumaier said:
Hilbert spaces don't have a classical limit. The latter is restricted to linear operators, which may have one. To have a classical limit, the above representation must depend on Planck's constant hbar in such a way that i[A,B]/hbar tends (at least for A and B in the Lie algebra of preferred observables) to a finite limit {B,A}, which represents a Poisson bracket.

Uhm, I suppose you are right, but I'm not so sure.

The wigner phase space formulation of classical mechanics goes in the classical limits to the Koopman- von neumann formulation of classical mechanics, which is a Hilbert space formalism for classical mechanics where there are linear operators associated to the dynamical variables.

I don't know what could be the relation between the quantum Hilbert space and the classical Hilbert space though.
 
“Quantum phenomena do not occur in a Hilbert space. They occur in a laboratory.”
Asher Peres, Quantum Theory: Concepts and Methods

In my own words, isomorphic Hilbert spaces may not be equivalent physically. Or even more directly, quantum physics is not only about states in Hilbert spaces.
 
Last edited:
andresB said:
The wigner phase space formulation of classical mechanics goes in the classical limits to the Koopman- von neumann formulation of classical mechanics, which is a Hilbert space formalism for classical mechanics where there are linear operators associated to the dynamical variables.

I don't know what could be the relation between the quantum Hilbert space and the classical Hilbert space though.

I described the Heisenberg picture, while the Wigner representation describes the Schroedinger picture. There the Hilbert space has no classical limit either. Instead, the classical limit again happens on the operator level. The states are the density matrices, and the classical limit that takes ##\hbar## to zero (essentially corresponding to infinitely fast decoherence) replaces these by diagonal operators. These are essentially the density functions of classical stochastic processes, corresponding to the Koopman formulation.
 
Last edited:
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top