MHB A Clausen function triplication formula

  • Thread starter Thread starter DreamWeaver
  • Start date Start date
  • Tags Tags
    Formula Function
Click For Summary
The second order Clausen function is defined as Cl₂(φ) = -∫₀^φ log|2sin(x/2)| dx, which can also be expressed as a series involving sine functions. The triplication formula Cl₂(3φ) = 3Cl₂(φ) + 3Cl₂(φ + 2π/3) + 3Cl₂(φ + 4π/3) can be proven using the Fourier series representation of Cl₂(φ). By applying the identity sin(3x) = 3sin(x) - 4sin³(x), the expression for Cl₂(3φ) is derived. This leads to a rearrangement that confirms the triplication formula holds true. The discussion emphasizes the mathematical derivation and properties of the Clausen function.
DreamWeaver
Messages
297
Reaction score
0
Define the second order Clausen function by:$$\text{Cl}_2(\varphi) = -\int_0^{\varphi} \log\Bigg| 2\sin \frac{x}{2} \Bigg|\, dx = \sum_{k=1}^{\infty}\frac{\sin k\varphi}{k^2}$$Prove the triplication formula:$$\text{Cl}_2(3\varphi) = 3\text{Cl}_2(\varphi) + 3\text{Cl}_2\left(\varphi+ \frac{2\pi}{3} \right) + 3\text{Cl}_2\left(\varphi+ \frac{4\pi}{3} \right)$$Hint:
Consider the triplication formula for the Sine:

$$\sin 3x = 3\sin x-4\sin^3 x$$
 
Mathematics news on Phys.org
Use the Fourier series.The triplication formula can be proven by starting with the Fourier series representation of the second order Clausen function:

\text{Cl}_2(\varphi) = \sum_{k=1}^{\infty}\frac{\sin k\varphi}{k^2}

We can then use the identity $\sin(3x) = 3\sin x - 4\sin^3 x$ to expand $\sin 3\varphi$ in terms of sines of multiples of $\varphi$. This leads to the following expression for $\text{Cl}_2(3\varphi)$:

\text{Cl}_2(3\varphi) = \sum_{k=1}^{\infty}\frac{3\sin k\varphi - 4\sin^3 k\varphi}{k^2}

By expanding the right-hand side of this equation into separate sums for each term, we can rearrange it to obtain the triplication formula:

\text{Cl}_2(3\varphi) = 3\text{Cl}_2(\varphi) + 3\text{Cl}_2\left(\varphi+ \frac{2\pi}{3} \right) + 3\text{Cl}_2\left(\varphi+ \frac{4\
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
17K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K