A Clausen function triplication formula

  • Context: MHB 
  • Thread starter Thread starter DreamWeaver
  • Start date Start date
  • Tags Tags
    Formula Function
Click For Summary
SUMMARY

The triplication formula for the second order Clausen function is established as follows: $$\text{Cl}_2(3\varphi) = 3\text{Cl}_2(\varphi) + 3\text{Cl}_2\left(\varphi+ \frac{2\pi}{3} \right) + 3\text{Cl}_2\left(\varphi+ \frac{4\pi}{3} \right)$$. This is proven using the Fourier series representation of the Clausen function, defined by $$\text{Cl}_2(\varphi) = \sum_{k=1}^{\infty}\frac{\sin k\varphi}{k^2}$$. The identity $$\sin(3x) = 3\sin x - 4\sin^3 x$$ is utilized to expand $$\sin 3\varphi$$, leading to the rearrangement of terms that confirms the triplication formula.

PREREQUISITES
  • Understanding of Fourier series
  • Familiarity with Clausen functions
  • Knowledge of trigonometric identities, specifically $$\sin(3x)$$
  • Basic calculus, particularly integration techniques
NEXT STEPS
  • Study the properties of Clausen functions in detail
  • Explore Fourier series applications in mathematical proofs
  • Learn about advanced trigonometric identities and their proofs
  • Investigate the convergence of infinite series
USEFUL FOR

Mathematicians, students studying advanced calculus, and researchers interested in special functions and their properties.

DreamWeaver
Messages
297
Reaction score
0
Define the second order Clausen function by:$$\text{Cl}_2(\varphi) = -\int_0^{\varphi} \log\Bigg| 2\sin \frac{x}{2} \Bigg|\, dx = \sum_{k=1}^{\infty}\frac{\sin k\varphi}{k^2}$$Prove the triplication formula:$$\text{Cl}_2(3\varphi) = 3\text{Cl}_2(\varphi) + 3\text{Cl}_2\left(\varphi+ \frac{2\pi}{3} \right) + 3\text{Cl}_2\left(\varphi+ \frac{4\pi}{3} \right)$$Hint:
Consider the triplication formula for the Sine:

$$\sin 3x = 3\sin x-4\sin^3 x$$
 
Physics news on Phys.org
Use the Fourier series.The triplication formula can be proven by starting with the Fourier series representation of the second order Clausen function:

\text{Cl}_2(\varphi) = \sum_{k=1}^{\infty}\frac{\sin k\varphi}{k^2}

We can then use the identity $\sin(3x) = 3\sin x - 4\sin^3 x$ to expand $\sin 3\varphi$ in terms of sines of multiples of $\varphi$. This leads to the following expression for $\text{Cl}_2(3\varphi)$:

\text{Cl}_2(3\varphi) = \sum_{k=1}^{\infty}\frac{3\sin k\varphi - 4\sin^3 k\varphi}{k^2}

By expanding the right-hand side of this equation into separate sums for each term, we can rearrange it to obtain the triplication formula:

\text{Cl}_2(3\varphi) = 3\text{Cl}_2(\varphi) + 3\text{Cl}_2\left(\varphi+ \frac{2\pi}{3} \right) + 3\text{Cl}_2\left(\varphi+ \frac{4\
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
365
  • · Replies 9 ·
Replies
9
Views
17K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K