A periodic function is one that ##f(\theta) = f(\theta + nT)##, by definition. However, the argument ##\theta## can be function of space and time ( ##\theta(x, t)## ), so exist 2 lines of development, one spatial and other temporal: $$f(\theta) = f(kx + \varphi) = f(2 \pi \xi x + \varphi) = f\left(\frac{2 \pi x}{\lambda} + \varphi \right)$$ $$f(\theta) = f(\omega t + \varphi) = f(2 \pi \nu t + \varphi) = f\left(\frac{2 \pi t}{T} + \varphi \right)$$ or the both together: $$f(\theta) = f(kx + \omega t + \varphi) = f(2 \pi \xi x + 2 \pi \nu t + \varphi) = f\left(\frac{2 \pi x}{\lambda} + \frac{2 \pi t}{T} + \varphi \right)$$ so, becomes obvius that ##\lambda## is the analogus of ##T##, thus the correct wound't be say that a periodic function is one that ##f(\theta) = f(\theta + nT + m\lambda)## ?(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums - The Fusion of Science and Community**

# Spatial and temporal periods and periodic functions

Have something to add?

- Similar discussions for: Spatial and temporal periods and periodic functions

Loading...

**Physics Forums - The Fusion of Science and Community**