- #1

forumfann

- 24

- 0

Could anyone help me on this question? Is it true that

[tex]\sum_{k=n+1}^{2n}\left(\begin{array}{c}

2n\\k\end{array}\right)x^{k}\left(1-x\right)^{2n-k}\leq2x[/tex]

for any [tex]x\in(0,1)[/tex] and any positive integer [tex]n[/tex]?

Any help on that will be greatly appreciated!

[tex]\sum_{k=n+1}^{2n}\left(\begin{array}{c}

2n\\k\end{array}\right)x^{k}\left(1-x\right)^{2n-k}\leq2x[/tex]

for any [tex]x\in(0,1)[/tex] and any positive integer [tex]n[/tex]?

Any help on that will be greatly appreciated!

Last edited: