- #1
forumfann
- 24
- 0
Could anyone help me on this question? Is it true that
[tex]\sum_{k=n+1}^{2n}\left(\begin{array}{c}
2n\\k\end{array}\right)x^{k}\left(1-x\right)^{2n-k}\leq2x[/tex]
for any [tex]x\in(0,1)[/tex] and any positive integer [tex]n[/tex]?
Any help on that will be greatly appreciated!
[tex]\sum_{k=n+1}^{2n}\left(\begin{array}{c}
2n\\k\end{array}\right)x^{k}\left(1-x\right)^{2n-k}\leq2x[/tex]
for any [tex]x\in(0,1)[/tex] and any positive integer [tex]n[/tex]?
Any help on that will be greatly appreciated!
Last edited: