DreamWeaver
- 297
- 0
This is NOT a tutorial, so any and all contributions are very much welcome... :DI've recently been working on the Barnes' function - see tutorial in Math Notes board - and been trying to generalize some of my results to higher order Barnes' functions (intimately connected with the Multiple Gamma functions, $$\Gamma_n(z)$$ ). If we define the Generalized Barnes' function
by$$G_1(z) = \frac{1}{\Gamma(z)}$$
$$G_2(z) = \frac{1}{\Gamma_2(z)} = G(z) \quad [ \text{the regular Barnes function} ]$$
$$G_3(z) = \frac{1}{\Gamma_3(z)}$$etc, and$$G_n(1) = 1$$
$$G_{n+1}(1+z)=G_n(z) G_{n+1}(z)$$
My main aim has been to find an infinite product representation for the Triple Barnes' Function, $$G_3(1+z)$$, and even higher order Multiple Barnes' functions. The following results are known:$$\frac{1}{\Gamma(z)}=ze^{\gamma z}\prod_{k=1}^{\infty} \left(1+\frac{z}{k} \right) e^{-z/k}$$$$\Rightarrow$$$$G_1(1+z)=\frac{1}{\Gamma(1+z)} =\frac{1}{z\Gamma(z)}= e^{\gamma z}\prod_{k=1}^{\infty} \left(1+\frac{z}{k} \right) e^{-z/k}$$and$$G_2(1+z)=G(1+z) = $$
$$(2\pi)^{z/2} \text{exp}\left(- \frac{z+z^2(1+\gamma )}{2} \right) \prod_{k=1}^{\infty} \left(1+\frac{z}{k} \right)^k \text{exp} \left(\frac{z^2}{2k}-z \right)$$
In the Barnes' function tutorial, I presented the following Taylor series$$\log \Gamma(1+z)=-\gamma z +\sum_{k=2}^{\infty} (-1)^k \frac{\zeta(k)}{k}z^k \quad \Rightarrow$$$$\log G_1(1+z)=\gamma z - \sum_{k=2}^{\infty} (-1)^k \frac{\zeta(k)}{k}z^k $$Similarly$$\log G_2(1+z)=\log G(1+z)= \frac{z}{2}\log(2\pi) - \left( \frac{z+z^2(1+\gamma )}{2} \right) + \sum_{k=2}^{\infty} (-1)^k \frac{\zeta(k)}{k+1}z^{k+1} $$
For various different reasons, this has led me to conjecture a family of polynomials, which I've come to call the Complementary Barnes' Function Polynomials (Barnes' Polynomials for short), $$\gamma_m(z) = \text{Polynomial of degree at most} \, m$$The central idea is this: in light of the previous two series, I've been lead to consider:The Barnes' Polynomial Conjecture:$$\log G_m(1+z)= \gamma_m(z) +(-1)^m \sum_{k=2}^{\infty} (-1)^k \frac{\zeta(k)}{k+m-1}z^{k+m-1}$$Or, equivalently, by exponentiating both sides$$G_m(1+z)= \text{exp} (\gamma_m(z)) \text{exp} \Bigg\{ (-1)^m \sum_{k=2}^{\infty} (-1)^k \frac{\zeta(k)}{k+m-1}z^{k+m-1} \Bigg\}$$Looking at the Taylor series results for $$G_1(1+z)$$ and $$G_2(1+z)$$ above, this implies that$$\gamma_1(z)= \gamma z$$$$\gamma_2(z)= \frac{z}{2}\log(2\pi) - \left( \frac{z+z^2(1+\gamma )}{2} \right)$$These are consistent with the idea that$$G_m(1+z)= \text{exp} (\gamma_m(z)) \text{exp} \Bigg\{ (-1)^m \sum_{k=2}^{\infty} (-1)^k \frac{\zeta(k)}{k+m-1}z^{k+m-1} \Bigg\}$$Since this implies that$$G_1(1+z)=e^{\gamma z} \text{exp} \Bigg\{ - \sum_{k=2}^{\infty} (-1)^k \frac{\zeta(k)}{k}z^k \Bigg\}$$and$$G_2(1+z)=$$
$$\text{exp} \left(\frac{z}{2}\log 2\pi- \frac{z+z^2(1+\gamma )}{2} \right) \Bigg\{ -
\sum_{k=2}^{\infty} (-1)^k \frac{\zeta(k)}{k+1}z^{k+1} \Bigg\}$$Conversely,$$G_1(1+z)= e^{\gamma z}\prod_{k=1}^{\infty} \left(1+\frac{z}{k} \right) e^{-z/k} = $$
$$\text{exp}(\gamma_1(z)) \prod_{k=1}^{\infty} \left(1+\frac{z}{k} \right) e^{-z/k}$$and$$G_2(1+z)=G(1+z) = $$
$$(2\pi)^{z/2} \text{exp}\left(- \frac{z+z^2(1+\gamma )}{2} \right) \prod_{k=1}^{\infty} \left(1+\frac{z}{k} \right)^k \text{exp} \left(\frac{z^2}{2k}-z \right)=$$$$\text{exp}(\gamma_2(z)) \prod_{k=1}^{\infty} \left(1+\frac{z}{k} \right)^k \text{exp} \left(\frac{z^2}{2k}-z \right)$$And therein lies the problem, as I've not been able to find a way of evaluating $$\gamma_{m \ge 3}(z)$$, or proving that$$\prod_{k=1}^{\infty} \left(1+\frac{z}{k} \right) e^{-z/k}= \text{exp} \Bigg\{ - \sum_{k=2}^{\infty} (-1)^k \frac{\zeta(k)}{k}z^k \Bigg\}
$$and$$\prod_{k=1}^{\infty} \left(1+\frac{z}{k} \right)^k \text{exp} \left(\frac{z^2}{2k}-z \right)= \text{exp} \Bigg\{ \sum_{k=2}^{\infty} (-1)^k \frac{\zeta(k)}{k+1}z^{k+1} \Bigg\}$$Any ideas, folks...?
by$$G_1(z) = \frac{1}{\Gamma(z)}$$
$$G_2(z) = \frac{1}{\Gamma_2(z)} = G(z) \quad [ \text{the regular Barnes function} ]$$
$$G_3(z) = \frac{1}{\Gamma_3(z)}$$etc, and$$G_n(1) = 1$$
$$G_{n+1}(1+z)=G_n(z) G_{n+1}(z)$$
My main aim has been to find an infinite product representation for the Triple Barnes' Function, $$G_3(1+z)$$, and even higher order Multiple Barnes' functions. The following results are known:$$\frac{1}{\Gamma(z)}=ze^{\gamma z}\prod_{k=1}^{\infty} \left(1+\frac{z}{k} \right) e^{-z/k}$$$$\Rightarrow$$$$G_1(1+z)=\frac{1}{\Gamma(1+z)} =\frac{1}{z\Gamma(z)}= e^{\gamma z}\prod_{k=1}^{\infty} \left(1+\frac{z}{k} \right) e^{-z/k}$$and$$G_2(1+z)=G(1+z) = $$
$$(2\pi)^{z/2} \text{exp}\left(- \frac{z+z^2(1+\gamma )}{2} \right) \prod_{k=1}^{\infty} \left(1+\frac{z}{k} \right)^k \text{exp} \left(\frac{z^2}{2k}-z \right)$$
In the Barnes' function tutorial, I presented the following Taylor series$$\log \Gamma(1+z)=-\gamma z +\sum_{k=2}^{\infty} (-1)^k \frac{\zeta(k)}{k}z^k \quad \Rightarrow$$$$\log G_1(1+z)=\gamma z - \sum_{k=2}^{\infty} (-1)^k \frac{\zeta(k)}{k}z^k $$Similarly$$\log G_2(1+z)=\log G(1+z)= \frac{z}{2}\log(2\pi) - \left( \frac{z+z^2(1+\gamma )}{2} \right) + \sum_{k=2}^{\infty} (-1)^k \frac{\zeta(k)}{k+1}z^{k+1} $$
For various different reasons, this has led me to conjecture a family of polynomials, which I've come to call the Complementary Barnes' Function Polynomials (Barnes' Polynomials for short), $$\gamma_m(z) = \text{Polynomial of degree at most} \, m$$The central idea is this: in light of the previous two series, I've been lead to consider:The Barnes' Polynomial Conjecture:$$\log G_m(1+z)= \gamma_m(z) +(-1)^m \sum_{k=2}^{\infty} (-1)^k \frac{\zeta(k)}{k+m-1}z^{k+m-1}$$Or, equivalently, by exponentiating both sides$$G_m(1+z)= \text{exp} (\gamma_m(z)) \text{exp} \Bigg\{ (-1)^m \sum_{k=2}^{\infty} (-1)^k \frac{\zeta(k)}{k+m-1}z^{k+m-1} \Bigg\}$$Looking at the Taylor series results for $$G_1(1+z)$$ and $$G_2(1+z)$$ above, this implies that$$\gamma_1(z)= \gamma z$$$$\gamma_2(z)= \frac{z}{2}\log(2\pi) - \left( \frac{z+z^2(1+\gamma )}{2} \right)$$These are consistent with the idea that$$G_m(1+z)= \text{exp} (\gamma_m(z)) \text{exp} \Bigg\{ (-1)^m \sum_{k=2}^{\infty} (-1)^k \frac{\zeta(k)}{k+m-1}z^{k+m-1} \Bigg\}$$Since this implies that$$G_1(1+z)=e^{\gamma z} \text{exp} \Bigg\{ - \sum_{k=2}^{\infty} (-1)^k \frac{\zeta(k)}{k}z^k \Bigg\}$$and$$G_2(1+z)=$$
$$\text{exp} \left(\frac{z}{2}\log 2\pi- \frac{z+z^2(1+\gamma )}{2} \right) \Bigg\{ -
\sum_{k=2}^{\infty} (-1)^k \frac{\zeta(k)}{k+1}z^{k+1} \Bigg\}$$Conversely,$$G_1(1+z)= e^{\gamma z}\prod_{k=1}^{\infty} \left(1+\frac{z}{k} \right) e^{-z/k} = $$
$$\text{exp}(\gamma_1(z)) \prod_{k=1}^{\infty} \left(1+\frac{z}{k} \right) e^{-z/k}$$and$$G_2(1+z)=G(1+z) = $$
$$(2\pi)^{z/2} \text{exp}\left(- \frac{z+z^2(1+\gamma )}{2} \right) \prod_{k=1}^{\infty} \left(1+\frac{z}{k} \right)^k \text{exp} \left(\frac{z^2}{2k}-z \right)=$$$$\text{exp}(\gamma_2(z)) \prod_{k=1}^{\infty} \left(1+\frac{z}{k} \right)^k \text{exp} \left(\frac{z^2}{2k}-z \right)$$And therein lies the problem, as I've not been able to find a way of evaluating $$\gamma_{m \ge 3}(z)$$, or proving that$$\prod_{k=1}^{\infty} \left(1+\frac{z}{k} \right) e^{-z/k}= \text{exp} \Bigg\{ - \sum_{k=2}^{\infty} (-1)^k \frac{\zeta(k)}{k}z^k \Bigg\}
$$and$$\prod_{k=1}^{\infty} \left(1+\frac{z}{k} \right)^k \text{exp} \left(\frac{z^2}{2k}-z \right)= \text{exp} \Bigg\{ \sum_{k=2}^{\infty} (-1)^k \frac{\zeta(k)}{k+1}z^{k+1} \Bigg\}$$Any ideas, folks...?