MHB A false approach to an integral....

  • Thread starter Thread starter chisigma
  • Start date Start date
  • Tags Tags
    Approach Integral
AI Thread Summary
The integral $\int_{0}^{2\pi} \sqrt{1 + \sin^{2} x}\ dx$ initially appears solvable using the substitution $z = e^{ix}$ and the residue theorem. However, complications arise due to the presence of two branch points at $z=1 - \sqrt{2}$ and $z=\sqrt{2}-1$, which lie within the unit circle. This necessitates contour deformation around these branch points, complicating the application of the residue theorem. The consensus suggests that while the integral may be solvable through contour integration, it is more complex than using elliptic integrals. Thus, the direct application of the residue theorem is deemed impossible without careful path selection.
chisigma
Gold Member
MHB
Messages
1,627
Reaction score
0
In...

http://mathhelpboards.com/questions-other-sites-52/unsolved-analysis-number-theory-other-sites-7479-3.html#post38136

... it has been found the value the integral...

$\displaystyle \int_{0}^{2\ \pi} \sqrt{1 + \sin^{2} x}\ dx\ (1)$ At first it seems feasible to set $z = e^{i\ x}$ and the Euler's relation $\displaystyle \sin x = \frac{e^{i\ x} - e^{- i\ x}}{2\ i}$ so that the integral becomes...

$\displaystyle \int_{0}^{2\ \pi} \sqrt{1 + \sin^{2} x}\ dx = \int_{\gamma} \frac{\sqrt{1 + (\frac{z - z
^{-1}}{2\ i})^{2}}}{i\ z}\ dz\ (2)$

... being $\gamma$ the unit circle and finally solve (2) with the residue theorem. Thi approach however fails and it is requested to explain why...

https://www.physicsforums.com/attachments/1799._xfImportMerry Christmas from Serbia


$\chi$ $\sigma$
 

Attachments

  • eb191d59c14248f1e362dd5eb1d3102c.jpg
    eb191d59c14248f1e362dd5eb1d3102c.jpg
    42.1 KB · Views: 143
Mathematics news on Phys.org
In theory it could be evaluated using the residue theorem. But you would need to deform the contour around the branch points at $z=1 - \sqrt{2}$ and $z= \sqrt{2}-1$.
 
Last edited:
What do you mean by fail ? , is it the case the we cannot apply the transformation ? or the integral is difficult to solve using that transformation ?
As RV indicated the square root produces two branch points for the polynomial so in case they are inside $$|z|=1$$ we have to deform the contour around them. Looking at the complexity of the answer it might be solvable by this contour but more challenging than using elliptic integrals .
 
As RV said the problem is the fact that f(z) has two brantch points inside the unit circle and that means that, unless You choose more or less complicated paths excluding them, the direct use of the residue theorem is impossible...
View attachment 1799Merry Christmas from Serbia


$\chi$ $\sigma$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top