A generalized fractional logarithm integral

Click For Summary
SUMMARY

The forum discussion centers around the generalized fractional logarithm integral defined as $$I(t,a) = \int^t_0 \frac{\log( x^2+a^2)}{1+x}\, dx$$. Participants, including a user named chisigma, explore specific cases such as $$I(1,1)$$ and $$I(1,a)$$, providing detailed calculations involving dilogarithms (denoted as $$\text{Li}_2$$) and complex numbers. The discussion emphasizes the need for a general formula and the potential involvement of complex analysis in solving the integral.

PREREQUISITES
  • Understanding of integral calculus, particularly improper integrals.
  • Familiarity with logarithmic functions and properties.
  • Knowledge of dilogarithms and their applications in complex analysis.
  • Basic concepts of complex numbers and their manipulation in integrals.
NEXT STEPS
  • Research the properties and applications of dilogarithms, specifically $$\text{Li}_2(z)$$.
  • Study techniques for evaluating integrals involving logarithmic functions.
  • Learn about complex analysis and its relevance to integral calculus.
  • Explore generalized integral forms and their derivations in mathematical literature.
USEFUL FOR

Mathematicians, students of advanced calculus, and researchers interested in integral equations and complex analysis will benefit from this discussion.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
I came up with the following integral

$$I(t,a) = \int^t_0 \frac{\log( x^2+a^2)}{1+x}\, dx $$

http://www.mathhelpboards.com/f28/fractional-logarithm-integral-5457-new/we have an attempt to solve the integral succeeded by chisigma for the particular case $$I(1,1)$$ , I don't now whether there is a closed form for the integral we can start by a simplified version $$I(1,a)$$ , hopefully by the end of this thread we have what we are seeking for . All attempts what so ever are always appreciated and welcomed .
 
Last edited:
Physics news on Phys.org
Here is an integral I believe will help us on the process

$$
\begin{align*}
\int^x_0 \frac{\log(1+t)}{1-t}\, dt&= \int^{1}_{1-x} \frac{\log(2-t)}{t}\, dt\,\, \,\,\text{For} \,\, 0\leq x<1 \\ &=\int^{1}_{1-x} \frac{\log (2)+\log\left(1-\frac{t}{2}\right)}{t}\, dt \\
&=\int^{1}_{1-x} \frac{\log (2)}{t}+\int^{1}_{1-x} \frac{\log\left(1-\frac{t}{2}\right)}{t}\, dt \\
&=-\log(1-x)\log(2)+\int^{\frac{1}{2}}_{\frac{1-x}{2}} \frac{\log(1-t)}{t}\, dt \\
&=-\log(1-x)\log(2)- \text{Li}_2 \left(\frac{1}{2} \right) +\text{Li}_2 \left(\frac{1-x}{2}\right) \\
\end{align*}
$$

I believe that the process of solving the general formula will involve some complex numbers , I hope someone will cover for me if I make mistakes .
 
Last edited:
Here is an attempt for the special case $$I(1,a)$$ where $a$ is real and $0\leq a<1$

we start by the following

$$I(a) = \int^1_0 \frac{\log(1+ax)}{1+x}\, dx $$

$$
\begin{align*}
I'(a) = \int^1_0 \frac{x}{(1+x)(1+ax)}\, dx &= \frac{1}{1-a} \left(\int^1_0\frac{1}{(1+ax)}\, dx -\int^1_0 \frac{1}{(1+x)}\right)\\
&= \frac{1}{1-a} \left(\frac{1}{a} \log(1+a)-\log(2) \right)\\
&= \frac{\log(1+a)}{a(1-a)}-\frac{\log(2)}{a-1} \\
&= \frac{\log(1+a)}{1-a}+\frac{\log(1+a)}{a} -\frac{\log(2)}{1-a} \\

\end{align*}
$$

$$I(a)=-\text{Li}_2 \left(\frac{1}{2} \right) +\text{Li}_2 \left(\frac{1-a}{2}\right)-\text{Li}_2(-a)+C$$using $$I(0)=0$$ we obtain $$C=0$$$$I(a) = \int^1_0 \frac{\log(1+ax)}{1+x}\, dx =- \text{Li}_2 \left(\frac{1}{2} \right) +\text{Li}_2 \left(\frac{1-a}{2}\right) -\text{Li}_2(-a)\,\,\,\, $$$$I(ia)+I(-ia) = \int^1_0 \frac{\log(1+a^2x^2)}{1+x}\, dx$$

$$ \int^1_0 \frac{\log(1+a^2x^2)}{1+x}\, dx = -2\text{Li}_2 \left(\frac{1}{2} \right) +\text{Li}_2 \left(\frac{1-ai}{2}\right)+ \text{Li}_2 \left(\frac{1+ai}{2}\right) -\text{Li}_2(-ai)-\text{Li}_2(ai)$$

First we solve the following

$$
\begin{align*}
\text{Li}_2 \left(\frac{1-ai}{2}\right)+ \text{Li}_2 \left(\frac{1+ai}{2}\right) &= \frac{\pi^2}{6}- \log \left(\frac{1-ai}{2} \right) \log \left(\frac{1+ai}{2} \right)\\
&=\frac{\pi^2}{6}- \left( \frac{1}{2}\log \left( \frac{1+a^2}{4} \right)- i \arctan (a) \right) \left( \frac{1}{2}\log\left( \frac{1+a^2}{4} \right)+ i\arctan(a) \right)\\
&= \frac{\pi^2}{6}-\frac{1}{4}\log^2 \left( \frac{1+a^2}{4} \right) - \arctan^2 ( a)
\end {align*}
$$

Secondly we solve the following

$$\text{Li}_2(-ai)+\text{Li}_2(ai) = \frac{1}{2} \text{Li}_2 \left( -a^2\right)$$Collecting the results together we obtain $$\int^1_0 \frac{\log(1+a^2x^2)}{1+x}\, dx =-2\text{Li}_2 \left(\frac{1}{2} \right)+\frac{\pi^2}{6}-\frac{1}{4} \log^2 \left( \frac{1+a^2}{4} \right) - \arctan^2 ( a)-\frac{1}{2} \text{Li}_2 \left( -a^2\right)$$

$$\int^1_0 \frac{\log(a^2+x^2)}{1+x}\, dx =-2 \log(a) \log(2) -2\text{Li}_2 \left(\frac{1}{2} \right)+\frac{\pi^2}{6}-\frac{1}{4}\log^2 \left( \frac{1+a^2}{4a^2} \right) - \arctan^2 \left(\frac{1}{a} \right)-\frac{1}{2} \text{Li}_2 \left( \frac{-1}{a^2}\right)$$

For the special case $$I(1,1)$$ we have

$$
\begin{align*}
\int^1_0 \frac{\log(1+x^2)}{1+x}\, dx &=-2\text{Li}_2 \left(\frac{1}{2} \right)+\frac{\pi^2}{6}-\frac{1}{4}\log^2 \left( \frac{1}{2} \right) - \frac{\pi^2}{16}-\frac{1}{2} \text{Li}_2 \left( -1 \right)\\
&= \frac{3}{4}\log^2(2) - \frac{\pi^2}{48}
\end{align*}$$
 
To solve for the general form we need to generalize the integral on http://www.mathhelpboards.com/f10/generalized-fractional-logarithm-integral-5467/#post24937

$$
\begin{align*}
\int^x_0 \frac{\log(1+at)}{1-t}\, dt&= \int^{1}_{1-x} \frac{\log(1+a-at)}{t}\, dt \\ &=\int^{1}_{1-x} \frac{\log (1+a)+\log\left(1-\frac{at}{1+a}\right)}{t}\, dt \\
&=\int^{1}_{1-x} \frac{\log (1+a)}{t}+\int^{\frac{a}{a+1}}_{\frac{a(1-x)}{a+1}} \frac{\log\left(1-t \right)}{t}\, dt \\

&=-\log(1-x)\log(1+a)- \text{Li}_2 \left( \frac{a}{a+1} \right) +\text{Li}_2 \left(\frac{a-ax}{a+1}\right) \\
\end{align*}$$
 
I should now post the full solution , the process is similar to that of post http://www.mathhelpboards.com/f10/generalized-fractional-logarithm-integral-5467/#post24951$$I(a) = \int^t_0 \frac{\log(1+ax)}{1+x}\, dx $$

$$
\begin{align*}
I'(a) = \int^t_0 \frac{x}{(1+x)(1+ax)}\, dx &= \frac{1}{1-a} \left(\int^t_0\frac{1}{(1+ax)}\, dx -\int^t_0 \frac{1}{(1+x)}\right)\\
&= \frac{1}{1-a} \left(\frac{1}{a} \log(1+at)-\log(1+t) \right)\\
&= \frac{\log(1+at)}{a(1-a)}-\frac{\log(1+t)}{a-1} \\
&= \frac{\log(1+at)}{1-a}+\frac{\log(1+at)}{a} -\frac{\log(1+t)}{1-a} \\

\end{align*}
$$

$$I(a)=- \text{Li}_2 \left( \frac{t}{t+1} \right) +\text{Li}_2 \left(\frac{t-ta}{t+1}\right)-\text{Li}_2(-at) +C$$using $$I(0)=0$$ we obtain $$C=0$$$$I(a) = \int^t_0 \frac{\log(1+ax)}{1+x}\, dx = - \text{Li}_2 \left( \frac{t}{t+1} \right) +\text{Li}_2 \left(\frac{t-ta}{t+1}\right)-\text{Li}_2(-at) $$$$I(ia)+I(-ia) = \int^t_0 \frac{\log(1+a^2x^2)}{1+x}\, dx$$

$$ \int^t_0 \frac{\log(1+a^2x^2)}{1+x}\, dx = -2\text{Li}_2 \left( \frac{t}{t+1} \right) +\text{Li}_2 \left(\frac{t-tai}{t+1}\right)+\text{Li}_2 \left(\frac{t+tai}{t+1}\right)-\text{Li}_2(-ait) -\text{Li}_2(ait) $$

we can simplify a little bit to get

$$ \int^t_0 \frac{\log(1+a^2x^2)}{1+x}\, dx = -2\text{Li}_2 \left( \frac{t}{t+1} \right) +\text{Li}_2 \left(\frac{t-tai}{t+1}\right)+\text{Li}_2 \left(\frac{t+tai}{t+1}\right)-\frac{1}{2}\text{Li}_2(-a^2t^2) $$I still don't know if I can simplify

$$\text{Li}_2 \left(\frac{t-tai}{t+1}\right)+\text{Li}_2 \left(\frac{t+tai}{t+1}\right)$$

Actually I am looking for a general formula for the following

$$\text{Li}_2(z) + \text{Li}_2( \bar{z}) $$ $$ \,\,\, \text{For} \,\,\,0 \leq \text{Re}(z) \leq 1$$
 
First we shall treat Dilogarithms that involve complex numbers

we start by the following

$$
\begin{align*}
\text{Li}_2(i) &= \sum_{k\geq 1} \frac{i^k}{k^2}\\
&= 1+\frac{i}{2^2}-\frac{1}{3^2}+\frac{1}{4^2}+\cdots \\
&= i-\frac{1}{2^2}-\frac{i}{3^2}+\frac{1}{4^2}+\cdots \\
&= -\frac{1}{4}\left( 1-\frac{1}{2^2}+\frac{1}{4^2}+\cdots \right) +i\left(1-\frac{1}{3^2}+\frac{1}{5^2}+\cdots \right) \\
&=\frac{-1}{4}\sum_{k\geq 1}\frac{(-1)^{k-1}}{k^2}+i \sum_{k\geq 0}\frac{(-1)^k}{(2k+1)^2}\\
&=-\frac{\pi^2}{48}+iG\,\,\,\, \text{where G is the Catalan's constant }
\end{align*}
$$

G : Catalan's constant
 
We shall now evaluate $$\text{Li}_2(1+i)$$

$$
\begin{align*}

\text{Li}_2(1+i)&= -\int^{1+i}_0 \frac{\log(1-x)}{x}\, dx \\
&=-\int^{1}_{-i} \frac{\log(x)}{1-x}\, dx \\
&=\log(-i)\log(1+i)-\int^{1}_{-i}\frac{\log(1-x)}{x}\, dx \\
&=\frac{i \pi}{2}\left( \log(\sqrt{2}+i\frac{\pi}{4}\right)+\text{Li}_2(1)-\text{Li}_2(-i)\\
&=\frac{i \pi \log(2)}{4}-\frac{\pi^2}{8}+\text{Li}_2(1)+\text{Li}_2(i)-\frac{1}{2}\text{Li}_2(-1)\\
&=\frac{i \pi \log(2)}{4}-\frac{\pi^2}{8}+\frac{\pi^2}{6}-\frac{\pi^2}{48}+iG+\frac{\pi^2}{24}\\
&=\frac{\pi^2}{16}+ \left( \frac{\pi \log(2)}{4}+G\right)i
\end{align*}
$$

Similiarliy we conclude that

$$\text{Li}_2(1-i)=\overline{\text{Li}_2(1+i)}=\frac{\pi^2}{16}- \left( \frac{\pi \log(2)}{4}+G\right)i $$
 
Conjuncture

  • $$\overline{\text{Li}_2(z)}=\text{Li}_2(\bar{z})$$

Corollary

  • $$\frac{\text{Li}_2(z)+\text{Li}_2(\bar{z})}{2} = \text{Re} \left( \text{Li}_2(z)\right)$$
 
We can prove the conjuncture for purely imaginary complex numbers

Consider the following with $$x\in \mathbb{R}$$

$$
\begin{align*}
\text{Li}_2(ix) &= -\int^{ix}_0 \frac{\log(1-t)}{t}\,dt\\

&= -\int^x_0 \frac{\log(1-it)}{t}\,dt\\
&= -\int^x_0 \frac{\log(\sqrt{1+t^2})}{t}\,dt+ i \int^x_0 \frac{\arctan(t)}{t}\, dt \\

\end{align*}

$$

Similarly we can show that

$$
\begin{align*}
\text{Li}_2(-ix) &= -\int^{-ix}_0 \frac{\log(1-t)}{t}\,dt\\

&= -\int^x_0 \frac{\log(1+it)}{t}\,dt\\
&= -\int^x_0 \frac{\log(\sqrt{1+t^2})}{t}\,dt- i \int^x_0 \frac{\arctan(t)}{t}\, dt \\

\end{align*}

$$

Hence $$\text{Li}_2(ix) = \overline{\text{Li}_2(-ix)}$$

I shall try to generalize for any complex number $z$ in the next post .
 
Last edited:
  • #10
Now to generalize , consider the complex number $$z$$

$$
\begin{align*}

\text{Li}_2(z) &= -\int^z_0 \frac{\log(1-t)}{t}\, dt \\

&= -\int^{|z|^2}_0 \frac{ \log \left(1-\frac{t}{\overline{z}} \right)}{t}\, dt \\

\end{align*}
$$

On the other hand

$$
\begin{align*}

\text{Li}_2(\overline{z}) &= -\int^{\overline{z}}_0 \frac{\log(1-t)}{t}\, dt \\

&= -\int^{|z|^2}_0 \frac{ \log \left(1-\frac{t}{z} \right)}{t}\, dt \\

\end{align*}
$$

Now consider

$$
\begin{align*}

\log \left(1-\frac{t}{\overline{z}} \right) &= \log \left(1-\frac{z t}{|z|^2} \right) \\

\end{align*}
$$$$
\begin{align*}

\log \left(1-\frac{t}{z} \right) &= \log \left(1-\frac{\overline{z} t}{|z|^2} \right) \\

\end{align*}
$$

Clearly the two complex functions have the same real part and opposite imaginary parts because of the oddness of the $$\arctan $$ function which proves our conjecture.
 
  • #11
I think posting this concludes the thread

$$\int^t_0 \frac{\log(1+a^2x^2)}{1+x}\, dx = -2\text{Li}_2 \left( \frac{t}{t+1} \right) +2\, \text{Re} \left( \text{Li}_2 \left(\frac{t+tai}{t+1}\right) \right)-\frac{1}{2}\text{Li}_2(-a^2t^2)$$
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K