A generalized fractional logarithm integral

Click For Summary

Discussion Overview

The discussion revolves around the exploration of a generalized fractional logarithm integral, specifically the integral defined as $$I(t,a) = \int^t_0 \frac{\log( x^2+a^2)}{1+x}\, dx$$. Participants are attempting to derive closed forms for this integral and its special cases, including $$I(1,a)$$ and $$I(1,1)$$, while discussing various mathematical techniques and related integrals.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant introduces the integral $$I(t,a)$$ and expresses uncertainty about the existence of a closed form, suggesting a simplified version $$I(1,a)$$ for further exploration.
  • Another participant presents an integral that they believe will aid in solving the problem, involving logarithmic functions and dilogarithms, and notes the potential involvement of complex numbers in the solution process.
  • A third participant provides a detailed attempt at evaluating the special case $$I(1,a)$$, including derivatives and relationships with dilogarithmic functions, while also expressing uncertainty about simplifications.
  • Further contributions include attempts to generalize the integral and derive relationships between different forms of the integral, with references to previous posts for context.
  • Discussions on the properties of dilogarithms involving complex numbers are introduced, with calculations presented for specific cases like $$\text{Li}_2(i)$$ and $$\text{Li}_2(1+i)$$.
  • Some participants conjecture about the relationships between dilogarithms of complex conjugates and their implications for real parts.

Areas of Agreement / Disagreement

Participants express a variety of approaches and techniques, but there is no consensus on a closed form for the generalized integral or its special cases. Multiple competing views and methods remain present throughout the discussion.

Contextual Notes

Some mathematical steps remain unresolved, particularly regarding simplifications and the generalization of results involving dilogarithms. The discussion also depends on specific definitions and properties of logarithmic and dilogarithmic functions.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
I came up with the following integral

$$I(t,a) = \int^t_0 \frac{\log( x^2+a^2)}{1+x}\, dx $$

http://www.mathhelpboards.com/f28/fractional-logarithm-integral-5457-new/we have an attempt to solve the integral succeeded by chisigma for the particular case $$I(1,1)$$ , I don't now whether there is a closed form for the integral we can start by a simplified version $$I(1,a)$$ , hopefully by the end of this thread we have what we are seeking for . All attempts what so ever are always appreciated and welcomed .
 
Last edited:
Physics news on Phys.org
Here is an integral I believe will help us on the process

$$
\begin{align*}
\int^x_0 \frac{\log(1+t)}{1-t}\, dt&= \int^{1}_{1-x} \frac{\log(2-t)}{t}\, dt\,\, \,\,\text{For} \,\, 0\leq x<1 \\ &=\int^{1}_{1-x} \frac{\log (2)+\log\left(1-\frac{t}{2}\right)}{t}\, dt \\
&=\int^{1}_{1-x} \frac{\log (2)}{t}+\int^{1}_{1-x} \frac{\log\left(1-\frac{t}{2}\right)}{t}\, dt \\
&=-\log(1-x)\log(2)+\int^{\frac{1}{2}}_{\frac{1-x}{2}} \frac{\log(1-t)}{t}\, dt \\
&=-\log(1-x)\log(2)- \text{Li}_2 \left(\frac{1}{2} \right) +\text{Li}_2 \left(\frac{1-x}{2}\right) \\
\end{align*}
$$

I believe that the process of solving the general formula will involve some complex numbers , I hope someone will cover for me if I make mistakes .
 
Last edited:
Here is an attempt for the special case $$I(1,a)$$ where $a$ is real and $0\leq a<1$

we start by the following

$$I(a) = \int^1_0 \frac{\log(1+ax)}{1+x}\, dx $$

$$
\begin{align*}
I'(a) = \int^1_0 \frac{x}{(1+x)(1+ax)}\, dx &= \frac{1}{1-a} \left(\int^1_0\frac{1}{(1+ax)}\, dx -\int^1_0 \frac{1}{(1+x)}\right)\\
&= \frac{1}{1-a} \left(\frac{1}{a} \log(1+a)-\log(2) \right)\\
&= \frac{\log(1+a)}{a(1-a)}-\frac{\log(2)}{a-1} \\
&= \frac{\log(1+a)}{1-a}+\frac{\log(1+a)}{a} -\frac{\log(2)}{1-a} \\

\end{align*}
$$

$$I(a)=-\text{Li}_2 \left(\frac{1}{2} \right) +\text{Li}_2 \left(\frac{1-a}{2}\right)-\text{Li}_2(-a)+C$$using $$I(0)=0$$ we obtain $$C=0$$$$I(a) = \int^1_0 \frac{\log(1+ax)}{1+x}\, dx =- \text{Li}_2 \left(\frac{1}{2} \right) +\text{Li}_2 \left(\frac{1-a}{2}\right) -\text{Li}_2(-a)\,\,\,\, $$$$I(ia)+I(-ia) = \int^1_0 \frac{\log(1+a^2x^2)}{1+x}\, dx$$

$$ \int^1_0 \frac{\log(1+a^2x^2)}{1+x}\, dx = -2\text{Li}_2 \left(\frac{1}{2} \right) +\text{Li}_2 \left(\frac{1-ai}{2}\right)+ \text{Li}_2 \left(\frac{1+ai}{2}\right) -\text{Li}_2(-ai)-\text{Li}_2(ai)$$

First we solve the following

$$
\begin{align*}
\text{Li}_2 \left(\frac{1-ai}{2}\right)+ \text{Li}_2 \left(\frac{1+ai}{2}\right) &= \frac{\pi^2}{6}- \log \left(\frac{1-ai}{2} \right) \log \left(\frac{1+ai}{2} \right)\\
&=\frac{\pi^2}{6}- \left( \frac{1}{2}\log \left( \frac{1+a^2}{4} \right)- i \arctan (a) \right) \left( \frac{1}{2}\log\left( \frac{1+a^2}{4} \right)+ i\arctan(a) \right)\\
&= \frac{\pi^2}{6}-\frac{1}{4}\log^2 \left( \frac{1+a^2}{4} \right) - \arctan^2 ( a)
\end {align*}
$$

Secondly we solve the following

$$\text{Li}_2(-ai)+\text{Li}_2(ai) = \frac{1}{2} \text{Li}_2 \left( -a^2\right)$$Collecting the results together we obtain $$\int^1_0 \frac{\log(1+a^2x^2)}{1+x}\, dx =-2\text{Li}_2 \left(\frac{1}{2} \right)+\frac{\pi^2}{6}-\frac{1}{4} \log^2 \left( \frac{1+a^2}{4} \right) - \arctan^2 ( a)-\frac{1}{2} \text{Li}_2 \left( -a^2\right)$$

$$\int^1_0 \frac{\log(a^2+x^2)}{1+x}\, dx =-2 \log(a) \log(2) -2\text{Li}_2 \left(\frac{1}{2} \right)+\frac{\pi^2}{6}-\frac{1}{4}\log^2 \left( \frac{1+a^2}{4a^2} \right) - \arctan^2 \left(\frac{1}{a} \right)-\frac{1}{2} \text{Li}_2 \left( \frac{-1}{a^2}\right)$$

For the special case $$I(1,1)$$ we have

$$
\begin{align*}
\int^1_0 \frac{\log(1+x^2)}{1+x}\, dx &=-2\text{Li}_2 \left(\frac{1}{2} \right)+\frac{\pi^2}{6}-\frac{1}{4}\log^2 \left( \frac{1}{2} \right) - \frac{\pi^2}{16}-\frac{1}{2} \text{Li}_2 \left( -1 \right)\\
&= \frac{3}{4}\log^2(2) - \frac{\pi^2}{48}
\end{align*}$$
 
To solve for the general form we need to generalize the integral on http://www.mathhelpboards.com/f10/generalized-fractional-logarithm-integral-5467/#post24937

$$
\begin{align*}
\int^x_0 \frac{\log(1+at)}{1-t}\, dt&= \int^{1}_{1-x} \frac{\log(1+a-at)}{t}\, dt \\ &=\int^{1}_{1-x} \frac{\log (1+a)+\log\left(1-\frac{at}{1+a}\right)}{t}\, dt \\
&=\int^{1}_{1-x} \frac{\log (1+a)}{t}+\int^{\frac{a}{a+1}}_{\frac{a(1-x)}{a+1}} \frac{\log\left(1-t \right)}{t}\, dt \\

&=-\log(1-x)\log(1+a)- \text{Li}_2 \left( \frac{a}{a+1} \right) +\text{Li}_2 \left(\frac{a-ax}{a+1}\right) \\
\end{align*}$$
 
I should now post the full solution , the process is similar to that of post http://www.mathhelpboards.com/f10/generalized-fractional-logarithm-integral-5467/#post24951$$I(a) = \int^t_0 \frac{\log(1+ax)}{1+x}\, dx $$

$$
\begin{align*}
I'(a) = \int^t_0 \frac{x}{(1+x)(1+ax)}\, dx &= \frac{1}{1-a} \left(\int^t_0\frac{1}{(1+ax)}\, dx -\int^t_0 \frac{1}{(1+x)}\right)\\
&= \frac{1}{1-a} \left(\frac{1}{a} \log(1+at)-\log(1+t) \right)\\
&= \frac{\log(1+at)}{a(1-a)}-\frac{\log(1+t)}{a-1} \\
&= \frac{\log(1+at)}{1-a}+\frac{\log(1+at)}{a} -\frac{\log(1+t)}{1-a} \\

\end{align*}
$$

$$I(a)=- \text{Li}_2 \left( \frac{t}{t+1} \right) +\text{Li}_2 \left(\frac{t-ta}{t+1}\right)-\text{Li}_2(-at) +C$$using $$I(0)=0$$ we obtain $$C=0$$$$I(a) = \int^t_0 \frac{\log(1+ax)}{1+x}\, dx = - \text{Li}_2 \left( \frac{t}{t+1} \right) +\text{Li}_2 \left(\frac{t-ta}{t+1}\right)-\text{Li}_2(-at) $$$$I(ia)+I(-ia) = \int^t_0 \frac{\log(1+a^2x^2)}{1+x}\, dx$$

$$ \int^t_0 \frac{\log(1+a^2x^2)}{1+x}\, dx = -2\text{Li}_2 \left( \frac{t}{t+1} \right) +\text{Li}_2 \left(\frac{t-tai}{t+1}\right)+\text{Li}_2 \left(\frac{t+tai}{t+1}\right)-\text{Li}_2(-ait) -\text{Li}_2(ait) $$

we can simplify a little bit to get

$$ \int^t_0 \frac{\log(1+a^2x^2)}{1+x}\, dx = -2\text{Li}_2 \left( \frac{t}{t+1} \right) +\text{Li}_2 \left(\frac{t-tai}{t+1}\right)+\text{Li}_2 \left(\frac{t+tai}{t+1}\right)-\frac{1}{2}\text{Li}_2(-a^2t^2) $$I still don't know if I can simplify

$$\text{Li}_2 \left(\frac{t-tai}{t+1}\right)+\text{Li}_2 \left(\frac{t+tai}{t+1}\right)$$

Actually I am looking for a general formula for the following

$$\text{Li}_2(z) + \text{Li}_2( \bar{z}) $$ $$ \,\,\, \text{For} \,\,\,0 \leq \text{Re}(z) \leq 1$$
 
First we shall treat Dilogarithms that involve complex numbers

we start by the following

$$
\begin{align*}
\text{Li}_2(i) &= \sum_{k\geq 1} \frac{i^k}{k^2}\\
&= 1+\frac{i}{2^2}-\frac{1}{3^2}+\frac{1}{4^2}+\cdots \\
&= i-\frac{1}{2^2}-\frac{i}{3^2}+\frac{1}{4^2}+\cdots \\
&= -\frac{1}{4}\left( 1-\frac{1}{2^2}+\frac{1}{4^2}+\cdots \right) +i\left(1-\frac{1}{3^2}+\frac{1}{5^2}+\cdots \right) \\
&=\frac{-1}{4}\sum_{k\geq 1}\frac{(-1)^{k-1}}{k^2}+i \sum_{k\geq 0}\frac{(-1)^k}{(2k+1)^2}\\
&=-\frac{\pi^2}{48}+iG\,\,\,\, \text{where G is the Catalan's constant }
\end{align*}
$$

G : Catalan's constant
 
We shall now evaluate $$\text{Li}_2(1+i)$$

$$
\begin{align*}

\text{Li}_2(1+i)&= -\int^{1+i}_0 \frac{\log(1-x)}{x}\, dx \\
&=-\int^{1}_{-i} \frac{\log(x)}{1-x}\, dx \\
&=\log(-i)\log(1+i)-\int^{1}_{-i}\frac{\log(1-x)}{x}\, dx \\
&=\frac{i \pi}{2}\left( \log(\sqrt{2}+i\frac{\pi}{4}\right)+\text{Li}_2(1)-\text{Li}_2(-i)\\
&=\frac{i \pi \log(2)}{4}-\frac{\pi^2}{8}+\text{Li}_2(1)+\text{Li}_2(i)-\frac{1}{2}\text{Li}_2(-1)\\
&=\frac{i \pi \log(2)}{4}-\frac{\pi^2}{8}+\frac{\pi^2}{6}-\frac{\pi^2}{48}+iG+\frac{\pi^2}{24}\\
&=\frac{\pi^2}{16}+ \left( \frac{\pi \log(2)}{4}+G\right)i
\end{align*}
$$

Similiarliy we conclude that

$$\text{Li}_2(1-i)=\overline{\text{Li}_2(1+i)}=\frac{\pi^2}{16}- \left( \frac{\pi \log(2)}{4}+G\right)i $$
 
Conjuncture

  • $$\overline{\text{Li}_2(z)}=\text{Li}_2(\bar{z})$$

Corollary

  • $$\frac{\text{Li}_2(z)+\text{Li}_2(\bar{z})}{2} = \text{Re} \left( \text{Li}_2(z)\right)$$
 
We can prove the conjuncture for purely imaginary complex numbers

Consider the following with $$x\in \mathbb{R}$$

$$
\begin{align*}
\text{Li}_2(ix) &= -\int^{ix}_0 \frac{\log(1-t)}{t}\,dt\\

&= -\int^x_0 \frac{\log(1-it)}{t}\,dt\\
&= -\int^x_0 \frac{\log(\sqrt{1+t^2})}{t}\,dt+ i \int^x_0 \frac{\arctan(t)}{t}\, dt \\

\end{align*}

$$

Similarly we can show that

$$
\begin{align*}
\text{Li}_2(-ix) &= -\int^{-ix}_0 \frac{\log(1-t)}{t}\,dt\\

&= -\int^x_0 \frac{\log(1+it)}{t}\,dt\\
&= -\int^x_0 \frac{\log(\sqrt{1+t^2})}{t}\,dt- i \int^x_0 \frac{\arctan(t)}{t}\, dt \\

\end{align*}

$$

Hence $$\text{Li}_2(ix) = \overline{\text{Li}_2(-ix)}$$

I shall try to generalize for any complex number $z$ in the next post .
 
Last edited:
  • #10
Now to generalize , consider the complex number $$z$$

$$
\begin{align*}

\text{Li}_2(z) &= -\int^z_0 \frac{\log(1-t)}{t}\, dt \\

&= -\int^{|z|^2}_0 \frac{ \log \left(1-\frac{t}{\overline{z}} \right)}{t}\, dt \\

\end{align*}
$$

On the other hand

$$
\begin{align*}

\text{Li}_2(\overline{z}) &= -\int^{\overline{z}}_0 \frac{\log(1-t)}{t}\, dt \\

&= -\int^{|z|^2}_0 \frac{ \log \left(1-\frac{t}{z} \right)}{t}\, dt \\

\end{align*}
$$

Now consider

$$
\begin{align*}

\log \left(1-\frac{t}{\overline{z}} \right) &= \log \left(1-\frac{z t}{|z|^2} \right) \\

\end{align*}
$$$$
\begin{align*}

\log \left(1-\frac{t}{z} \right) &= \log \left(1-\frac{\overline{z} t}{|z|^2} \right) \\

\end{align*}
$$

Clearly the two complex functions have the same real part and opposite imaginary parts because of the oddness of the $$\arctan $$ function which proves our conjecture.
 
  • #11
I think posting this concludes the thread

$$\int^t_0 \frac{\log(1+a^2x^2)}{1+x}\, dx = -2\text{Li}_2 \left( \frac{t}{t+1} \right) +2\, \text{Re} \left( \text{Li}_2 \left(\frac{t+tai}{t+1}\right) \right)-\frac{1}{2}\text{Li}_2(-a^2t^2)$$
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K