• Support PF! Buy your school textbooks, materials and every day products via PF Here!

A glass tube filled with mercury

Homework Statement
A glass tube with a section of ##A= 10^{-4} m^2## and length ##l=1.14 m## is closed at one end and open at the other end. Inside the tube there's a mercury's column ##l_2=0.3 m##. When the tube is placed horizontally, the columns of air on the right and left of the column of mercury have the same length ##l_1=l_3=0.42 m##. The tube is now placed vertically with the open end to the top. Determine the length of the column of air ##l_1'## of the closed end. How long the length ##l_1''## of air would be if the tube was closed before it was placed vertically? Assume temperature constant during every process, air is a perfect gas and ##ρ_{Hg}=13.6 ρ_{air}##.
Homework Equations
Boyle's law: ##P*V=constant##
1567873258774.png

I guess I have to find out something when the tube is on the horizontal.
What force should I consider? Is the pressure of the air inside still ##p_{atm}##?
When it is on the vertical, the equation is something like this?
##P_{Hg}+p_{atm}*A=p_{atm}*A+ρ_{air}*A*(l_1-l_1')*g## with ##P_{Hg}=ρ_{Hg}*A*l_2*g## weight of the column of mercury.
Or maybe I shouldn't face this problem considering the force...?
 

haruspex

Science Advisor
Homework Helper
Insights Author
Gold Member
2018 Award
31,505
4,629
Please try to justify your equation. (I fail to see how the weight of air in the closed section comes into it.)
 
That was just an attempt, I don't even think that is right.
I considered as downward forces the weight of the column of mercury ##P_{Hg}## and the atmospheric pressure times the section ##p_{atm}*A##.
I considered as upward forces the bouyant force ##ρ_{air}∗A∗(l1−l′1)∗g ## and the pressure of the air in the closed section. Is it right to consider the bouyant force? What about the pressure of the closed section?
I fail to see how the weight of air in the closed section comes into it.
Really, I didn't even considered it... :oldshy:
 

haruspex

Science Advisor
Homework Helper
Insights Author
Gold Member
2018 Award
31,505
4,629
What law tells you how the shrinkage in its length leads to greater pressure?
Boyle's law. My main dubt is: can I consider the initial pressure of the closed section ##p_{atm}##? Why?
In such case, it would be ##p_{atm}*A*l_1=p_{f}*A*(l_1-l_1')##
But I still need something else. Where should I look for it? Do I have to adjust the equation of forces (when the tube is on the vertical)?
 

haruspex

Science Advisor
Homework Helper
Insights Author
Gold Member
2018 Award
31,505
4,629
can I consider the initial pressure of the closed section ##p_{atm}##? Why?
Yes, because while horizontal any difference from atmospheric pressure would have caused the mercury to move.
In such case, it would be ##p_{atm}*A*l_1=p_{f}*A*(l_1-l_1')##
Doesn’t look right to me.
Always worth checking trivial special cases. What does your equation give if l1 doesn't change?
 
Last edited:
Always worth checking trivial special cases. What does your equation give if l1 doesn't change?
It gives ##p_{atm}=p_f##. Why is this wrong? If ##l_1'## doesn't change, the air would take the same volume.
Anyways, how should I apply Boyle's law?

EDIT:
well, now I got it: ##p_{atm}*A*l_1=p_f*A*l_1'##.
What is the next step?
 
Last edited:

haruspex

Science Advisor
Homework Helper
Insights Author
Gold Member
2018 Award
31,505
4,629
It gives ##p_{atm}=p_f##. Why is this wrong? If ##l_1'## doesn't change, the air would take the same volume.
Anyways, how should I apply Boyle's law?

EDIT:
well, now I got it: ##p_{atm}*A*l_1=p_f*A*l_1'##.
What is the next step?
Write the force balance equation for the mercury using pf.
 
Is this right?
##ρ_{Hg}*A*l_2*g+p_{atm}*A=p_f*A##
The first term is the weight of mercury. (On the homework statement I did a mistake ##ρ_{Hg}=13.6*ρ_{H2O}##)
If yes, then ##l_1'=0.3 m##.
 

haruspex

Science Advisor
Homework Helper
Insights Author
Gold Member
2018 Award
31,505
4,629
Is this right?
##ρ_{Hg}*A*l_2*g+p_{atm}*A=p_f*A##
The first term is the weight of mercury. (On the homework statement I did a mistake ##ρ_{Hg}=13.6*ρ_{H2O}##)
If yes, then ##l_1'=0.3 m##.
Correct.
The easiest way is to start with atmospheric pressure as 0.76m of Hg. The 0.3m in the tube is going to increase the pressure to 1.06m, i.e. in the ratio 106/76. So the volume of air is reduced in that ratio: (76/106)0.42=0.3.
 
For the second part (the tube is completely closed before it is on the vertical), do I have to repeat the reasoning I did before?
Now, when the air under the mercury is compressed, the air above the mercury expands.
Boyle's Law:
##p_{atm}*A*l_1=p_1*A*(l_1-x)## for the air under the mercury
##p_{atm}*A*l_3=p_3*A*(l_3+x)## for the air above the mercury
and by the force balance equation:
##ρ_{Hg}∗A∗l_2∗g+p_3*A=p_1*A##
3 equation and 3 unknows ##p_1##, ##p_3## and ## x##. Then I can find ##l_1''=l_1-x##
Let me know if this is right please.
Just one last thing, why can I consider the length of mercury constant? I did it for the first part of the problem too.
 
...Yes, actually there's no reason to change, in this problem. Thanks a lot :oldsmile:
 

Want to reply to this thread?

"A glass tube filled with mercury" You must log in or register to reply here.

Related Threads for: A glass tube filled with mercury

Replies
1
Views
917
Replies
9
Views
464
Replies
3
Views
4K
Replies
2
Views
2K
  • Posted
Replies
13
Views
3K
  • Posted
Replies
8
Views
3K
  • Posted
Replies
2
Views
2K
Replies
1
Views
13K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top