A good book for an introduction to Algebraic Topology

Click For Summary

Discussion Overview

The discussion revolves around recommendations for introductory textbooks on algebraic topology, particularly for an undergraduate course. Participants share their opinions on various books, including their readability and suitability for beginners, as well as their coverage of topics in algebraic and general topology.

Discussion Character

  • Exploratory
  • Debate/contested
  • Technical explanation

Main Points Raised

  • One participant suggests "A First Course in Algebraic Topology" by Czes Kosniowski and "Algebraic Topology: An Introduction" by W.S. Massey as potential introductory texts but is unsure which is better.
  • Another participant mentions a free resource by Hatcher, noting it is intended as an introduction.
  • Some participants express a preference for Massey, citing his writing style, while others recommend visiting the library to assess readability personally.
  • One participant prefers "Bredon" for its concise presentation and suggests "Dubrovin/Fomenko/Novikov" for a theoretical physics approach.
  • It is noted that Kosniowski is more elementary than Massey or Munkres, with a good balance of abstract ideas and concrete examples.
  • Concerns are raised about Munkres being less suitable for algebraic topology, with one participant finding his chapters dry and unmotivated.
  • Another participant finds Hatcher more readable than Massey, especially for those unfamiliar with graduate-level algebra.

Areas of Agreement / Disagreement

Participants express differing opinions on the suitability of various textbooks, with no clear consensus on which book is the best introductory resource. Some favor Kosniowski for its accessibility, while others advocate for Massey or Hatcher based on their own experiences.

Contextual Notes

Participants mention varying levels of familiarity with point-set topology, which may influence their recommendations. The discussion reflects a range of preferences and experiences with the texts mentioned.

Karlx
Messages
75
Reaction score
0
Hi everybody.

Next year I will start an undergraduate course on algebraic topology.
Which book would you suggest as a good introduction to this matter ?

My first options are the following:

1.- "A First Course in Algebraic Topology" by Czes Kosniowski

2.- "Algebraic Topology: An Introduction", by W.S.Massey

but I don't know whether they are comparable or there is one that is much better than the other.

Then, I am also wondering to pick up "Topology", by J.R.Munkres.
I think it covers general and algebraic topology, but I am afraid it is not a "introductory" textbook as Kosniowski and Massey.

Thanks in advance for your suggestions.
 
Physics news on Phys.org
massey is my favorite author in algebraic topology, but you should go to the library and see for yourself which is more readable.
 
Thanks Vargo and mathwonk for your suggestions.
I'll take a look on Kosniowski's, Massey's and Munkres's and I'll decide.
Hatcher's is interesting, but a little away from the contents of my course.
 
what does your course cover?
 
I personally preferred Bredon for his concise and elegant presentation of the subject, also he gives nice proofs without making use of spectral sequences. Hatcher is a really nice book too. For a theoretical physics approach (as for notation and usability) I'd suggest Dubrovin/Fomenko/Novikov.
Ultimately, you should definitely go to the library and see by yourself which one is more suitable ;) Enjoy!
 
I'd say Kosniowski is more elementary than Massey or Munkres. It is brief, and cover less material than the other two, but it does have a pretty good exposition of the subject, with a good balance of abstract idea and concrete examples.

Massey should be good if you already familiear with some point-set topology as well. If you don't, Kosniowski has a nice treatment of point-set topology in first 1/4 of his book that is just enough to learn algebraic topology in either Kosniowski or Massey.

I would avoid Munkres for algebraic topology, though. I found his chapters on algebraic topology (ESPECIALLY the covering space chapter) to be quite dry and unmotivated. His general topology section is quite well-written and comprehensive, so that's another resource for point-set topology if you need it (though you certainly don't need to read ALL the chapters in general topology, though!).
 
My course is a one-year elementary introductory course, first half on general topology and second half on algebraic topology.

So, from your comments, I think the best choice for my elementary level in this matter, will be, perhaps, Kosniowski-Munkres for general topology and Kosniowski-Massey-Munkres for algebraic topology.

In the library I've picked up Kosniowski and I find it very readable. Massey is a little harder. I agree with PieceOfPi.

Thanks again for your help.
Bye.
 
I find Hatcher to be much more readable than Massey if you haven't seen much graduate level algebra yet. Massey just throws around things like direct limits of groups and tor functors and expects you to know them, or at most gives a dry list of properties. Hatcher actually goes through and motivates the algebraic constructions from the ground.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
  • Sticky
  • · Replies 16 ·
Replies
16
Views
12K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
9K
  • · Replies 15 ·
Replies
15
Views
6K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K