A man in an elevator at the forces affecting him

  • Thread starter Thread starter aeromat
  • Start date Start date
  • Tags Tags
    Elevator Forces
AI Thread Summary
A 75kg man experiences different forces in an elevator depending on its motion. When at rest, the normal force equals his weight, calculated as 735.75 N upward. During upward acceleration of 2.0 m/s², the force exerted by the elevator increases due to the combined effects of gravity and acceleration. Conversely, during downward acceleration of 2.0 m/s², the force exerted decreases as the elevator moves against gravity. Understanding the forces requires applying Newton's Laws and considering the man's frame of reference as the elevator accelerates.
aeromat
Messages
113
Reaction score
0

Homework Statement


A 75kg man stands in an elevator. What will be the force the elevator exerts on him when:
a) the elevator is at rest
b) the elevator is moving upward with a uniform acceleration of 2.0m/s^2
c) the elevator is moving downward with a uniform acceleration of 2.0m/s^2.

Homework Equations


Fg = mg
FNet = m(a)

The Attempt at a Solution


I got the following answers that matched the ones on my worksheet:
a) = 735.75 N [up]
The other two I got from just randomly pluging and adding/subtracting the acceleration of gravity with the uniform acceleration of the elevator.
However, I don't understand what I did and WHY this is the answer. I am the type that doesn't just take the answer as correct from getting it right, but until it makes sense to me..

b) F = (75)(9.81 + 2.0)
c) F = (75)(9.81 - 2.0)
 
Physics news on Phys.org
Just use Newton's Laws to know that a force corresponds to an acceleration.
As the elevator moves, a new force is exerted on the man. The direction of this force depends on the direction of motion of the elevator.
Does it make sense?
 
No sorry it doesn't make sense. If you were to draw an FBD for b), and c), how would it look like? ;|
 
If the elevator is going down, then the force on the man would be smaller, and vice versa for going up in an elevator.
 
Consider it from the man's (mass m) frame of reference. When the elevator (mass M) is at rest, in the man's frame there is a normal force (N) counteracting his weight (force of gravity, mg) applied to the bottom of the elevator. Using Newton's Second Law and calling up positive,
Fnet=manet
where Fnet=N-mg. Since the elevator is at rest, anet=0.
This implies: 0=N-mg leading to: N=mg.

However, when the elevator starts to move, the man's frame is no longer at rest, but is moving with some acceleration. The man only sees the forces of his weight and the normal force of the elevator, but the reference frame is accelerating. Thus, while the man sees no net acceleration with respect to the elevator, the frame has its own acceleration, which we'll call aF.

Our equation of motion becomes:
Fnet=manet+maF
which simplifies to:
Fnet=maF
then:
N-mg=maF
N=m(aF+g)

Now, if we expand our system to look at the elevator, our system becomes locally inertial again with two forces acting on the elevator, a tension in the cable that pulls/lowers the elevator, and the force of gravity on the elevator plus the man. The man's weight is added to the elevator's, and the now-internal forces between the elevator and man are ignored.
 
Last edited:
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
I was thinking using 2 purple mattress samples, and taping them together, I do want other ideas though, the main guidelines are; Must have a volume LESS than 1600 cubic centimeters, and CAN'T exceed 25 cm in ANY direction. Must be LESS than 1 kg. NO parachutes. NO glue or Tape can touch the egg. MUST be able to take egg out in less than 1 minute. Grade A large eggs will be used.
Back
Top