A misconception I have about impulse formula interpretation

AI Thread Summary
The discussion revolves around the misconception that applying force over time does not affect acceleration. It clarifies that while both carts experience the same change in velocity, the time taken to achieve that change influences acceleration. Specifically, a greater force applied for a shorter duration results in higher acceleration. The concepts of impulse and acceleration are compatible, with impulse being useful in different contexts. Understanding these principles is crucial for accurate physics interpretation.
elElegido
Messages
1
Reaction score
0
The misconception came up from the following problem: "A 0.50-kg cart (#1) is pulled with a 1.0-N force for 1 second; another 0.50 kg cart (#2) is pulled with a 2.0 N-force for 0.50 seconds. Which cart (#1 or #2) has the greatest acceleration? "

I know the answer is the following (I looked it up) a=f/m --> 1N/0.5kg= 2m/s2 and 2N/0.5kg = 4m/s2, so the 2n carts acceleration is greater but for me it goes against common sense. What common sense tells me is that if you apply 2N for 0.5s causes the same acceleration as applying 1N for 1s if the object has in both cases has the same mass: 2N*0.5s = 1N*s average force and 1N*1s = 1N*s average force, this should cause the same acceleration for both, not acceleration #2cart >#1cart.

What's the point of saying we apply the for during let's say 1s, 5000000s, or in 0.0000000001s if the time doesn't really affect the acceleration? What's the point of impulse as force*time? What I see is acceleration doesn't care about how much time you apply a force so it goes against the concept of impulse itself, doesn't it?

Thanks in advance for your help. Have a great day.

[Moderator's note: moved from a technical forum.]
 
Physics news on Phys.org
The change in velocity is the same. But, as the change takes half the time in the second case, the acceleration must be greater. In other words, in terms of well-defined physics:
$$a = \frac{\Delta v}{\Delta t} \ \text{and} \ a \ne \Delta v$$
 
elElegido said:
What I see is acceleration doesn't care about how much time you apply a force so it goes against the concept of impulse itself, doesn't it?
No. The two concepts are completely compatible. It may be that one or the other is more useful in a particular scenario.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top