A = norm-preserving linear map (+other conditions) => A = lin isometry

Click For Summary

Discussion Overview

The discussion revolves around the conditions under which a linear map \( A: V \to V \) in a scalar product space is a linear isometry, particularly focusing on the implications of norm preservation and the mapping of vector types (spacelike, timelike, lightlike). Participants explore the completeness of a proof from a textbook and consider whether the theorem can be generalized to linear maps between different scalar product spaces.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant references a theorem from a textbook that states if a linear map preserves norms and maintains the type of vectors, then it is a linear isometry.
  • Another participant points out that the proof in the book is incomplete without additional conditions, noting that norm preservation alone could lead to a different relationship between inner products.
  • A participant expresses understanding of the need for additional conditions and questions whether the theorem could apply more generally to linear maps between different scalar product spaces.
  • Another participant agrees that the theorem should hold in more general conditions, asserting that the proof does not depend on the image space being the same as the domain space.
  • One participant elaborates on the relationship between inner products, suggesting that the inner product of any pair of vectors can be derived from specific inner products, which may explain the brevity of the proof in the book.

Areas of Agreement / Disagreement

Participants generally agree that the theorem requires additional conditions beyond norm preservation, but there is no consensus on the completeness of the proof or the general applicability of the theorem to different scalar product spaces.

Contextual Notes

Some participants note that the proof's reliance on the mapping of vector types and the implications of inner product relationships may not be fully addressed, leaving certain assumptions and conditions unresolved.

Shirish
Messages
242
Reaction score
32
I'm studying "Semi-Riemannian Geometry: The Mathematical language of General Relativity" by Stephen Newman. Theorem 4.4.4 in that book:

Let ##(V,g)## be a scalar product space, and let ##A:V\to V## be a linear map. Then:
  1. If ##A## is a linear isometry, then ##\|A(v)\|=\|v\|\ \forall\ v\in V##
  2. If ##\|A(v)\|=\|v\|\ \forall\ v\in V##, and if ##A## maps spacelike (resp. timelike and lightlike) vectors to spacelike (resp. timelike and lightlike) , then ##A## is a linear isometry.

The proof of part 2 is given like this:

Since ##\|A(v)\|=\|v\|## is equivalent to ##|\langle A(v),A(v)\rangle|=|\langle v,v\rangle|##, the assumption regarding the way ##A## maps vectors yields ##\langle A(v),A(v)\rangle=\langle v,v\rangle##.

Seems a bit incomplete. I'd like to know if my approach is correct:

$$\langle A(v+tw),A(v+tw)\rangle=\langle A(v)+tA(w),A(v)+tA(w)\rangle$$
$$=\langle A(v),A(v)\rangle+t^2\langle A(w),A(w)\rangle+2t\langle A(v),A(w)\rangle=\langle v,v\rangle+t^2\langle w,w\rangle+2t\langle A(v),A(w)\rangle$$

But $$\langle A(v+tw),A(v+tw)\rangle=\langle v+tw,v+tw\rangle=\langle v,v\rangle+t^2\langle w,w\rangle+2t\langle v,w\rangle$$

(I'm not even sure if the ##t## coefficient matters) The above shows that ##\langle v,w\rangle=\langle A(v),A(w)\rangle##.

Is this fine? Secondly, wouldn't this same theorem more generally hold for a linear map ##A:V\to W##, where ##V,W## are both scalar product spaces (regardless of dimensions of ##V## and ##W##)?
 
Physics news on Phys.org
The book proof is just a sketch. The point is that without the second condition you could have$$\langle Av, Aw\rangle = -\langle v,w\rangle$$Your proof needs to take this into account.
 
PeroK said:
The book proof is just a sketch. The point is that without the second condition you could have$$\langle Av, Aw\rangle = -\langle v,w\rangle$$Your proof needs to take this into account.
Yep that I understood already (I mean about why the additional conditions are needed apart from norm preservation), but I was still wondering if the whole theorem holds in more general conditions
 
Shirish said:
Yep that I understood already (I mean about why the additional conditions are needed apart from norm preservation), but I was still wondering if the whole theorem holds in more general conditions
Yes, it must. The proof is not dependent on the image space being ##V##.
 
From
##\langle v+w,v+w\rangle=\langle v,v\rangle+\langle w,w\rangle+2\langle v,w\rangle##

you have

##\langle v,w\rangle = \frac12 \left[\langle v+w,v+w\rangle-\langle v,v\rangle-\langle w,w\rangle \right]##

Thus the inner product of any pair of vectors is determined by inner products of the form ##\langle a,a\rangle##. That is why they didn't write any more.
 
  • Like
Likes   Reactions: Shirish

Similar threads

  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K