MHB A 'not too challenge' question....

  • Thread starter Thread starter chisigma
  • Start date Start date
  • Tags Tags
    Challenge
Click For Summary
The discussion revolves around the sum of the series $\sum_{n=2}^{\infty} \{1-\zeta(n)\}$, where $\zeta(s)$ is the Riemann Zeta Function. The unexpected simplicity of the final result is highlighted, with the calculation showing that the sum equals -1, contrary to initial assumptions. The approach involves interchanging the order of summation and applying the telescoping series technique. Participants emphasize the challenge lies in recognizing the correct result rather than the complexity of the calculations. Ultimately, the conclusion is that the sum of the series is -1.
chisigma
Gold Member
MHB
Messages
1,627
Reaction score
0
The challenging aspect to the question is the unexspected semplicity of the final result...

Find the sum of the series...

$\displaystyle \sum_{n=2}^{\infty} \{1-\zeta(n)\}$ (1)

... where...

$\displaystyle \zeta(s)= \sum_{k=1}^{\infty} \frac{1}{k^{s}}$ (2)

... is the Riemann Zeta Function...

Kind regards

$\chi$ $\sigma$
 
Mathematics news on Phys.org
chisigma said:
The challenging aspect to the question is the unexspected semplicity of the final result...

Find the sum of the series...

$\displaystyle \sum_{n=2}^{\infty} \{1-\zeta(n)\}$ (1)

... where...

$\displaystyle \zeta(s)= \sum_{k=1}^{\infty} \frac{1}{k^{s}}$ (2)

... is the Riemann Zeta Function...

Kind regards

$\chi$ $\sigma$

$\displaystyle\sum_{n=2}^{\infty }(1-\zeta(n))=\sum_{n=2}^{\infty }\sum_{k=2}^{\infty }\frac{1}{k^n}=\sum_{k=2}^{\infty }\sum_{n=2}^{\infty }\frac{1}{k^n}=\sum_{k=2}^{\infty }\frac{1}{k^2}(1+\frac{1}{k}+\frac{1}{k^2}+\cdots)=\sum_{k=2}^{\infty }\frac{1}{k^2}\cdot\frac{k}{k-1}=\sum_{k=2}^{\infty }\frac{1}{k(k-1)}=\sum_{k=1}^{\infty }\frac{1}{k(k+1)}=1$, where the last equality it by telescoping:$\displaystyle\sum_{k=1}^{t}\frac{1}{k(k+1)}=\sum_{k=1}^{t}( \frac{1}{k}-\frac{1}{k+1})=\frac{1}{1}-\frac{1}{t+1}\to1$ as $t\to\infty$.
 
The real 'challenge' was in the fact that the correct result is...

$\displaystyle \sum_{n=2}^{\infty} \{1-\zeta(n)\}= -\sum_{n=2}^{\infty}\sum_{k=2}^{\infty} \frac{1}{k^{n}}=...=-1$

... that isn't 1 of course (Wasntme)...

Kind regards

$\chi$ $\sigma$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 0 ·
Replies
0
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K