MHB A 'not too challenge' question....

  • Thread starter Thread starter chisigma
  • Start date Start date
  • Tags Tags
    Challenge
AI Thread Summary
The discussion revolves around the sum of the series $\sum_{n=2}^{\infty} \{1-\zeta(n)\}$, where $\zeta(s)$ is the Riemann Zeta Function. The unexpected simplicity of the final result is highlighted, with the calculation showing that the sum equals -1, contrary to initial assumptions. The approach involves interchanging the order of summation and applying the telescoping series technique. Participants emphasize the challenge lies in recognizing the correct result rather than the complexity of the calculations. Ultimately, the conclusion is that the sum of the series is -1.
chisigma
Gold Member
MHB
Messages
1,627
Reaction score
0
The challenging aspect to the question is the unexspected semplicity of the final result...

Find the sum of the series...

$\displaystyle \sum_{n=2}^{\infty} \{1-\zeta(n)\}$ (1)

... where...

$\displaystyle \zeta(s)= \sum_{k=1}^{\infty} \frac{1}{k^{s}}$ (2)

... is the Riemann Zeta Function...

Kind regards

$\chi$ $\sigma$
 
Mathematics news on Phys.org
chisigma said:
The challenging aspect to the question is the unexspected semplicity of the final result...

Find the sum of the series...

$\displaystyle \sum_{n=2}^{\infty} \{1-\zeta(n)\}$ (1)

... where...

$\displaystyle \zeta(s)= \sum_{k=1}^{\infty} \frac{1}{k^{s}}$ (2)

... is the Riemann Zeta Function...

Kind regards

$\chi$ $\sigma$

$\displaystyle\sum_{n=2}^{\infty }(1-\zeta(n))=\sum_{n=2}^{\infty }\sum_{k=2}^{\infty }\frac{1}{k^n}=\sum_{k=2}^{\infty }\sum_{n=2}^{\infty }\frac{1}{k^n}=\sum_{k=2}^{\infty }\frac{1}{k^2}(1+\frac{1}{k}+\frac{1}{k^2}+\cdots)=\sum_{k=2}^{\infty }\frac{1}{k^2}\cdot\frac{k}{k-1}=\sum_{k=2}^{\infty }\frac{1}{k(k-1)}=\sum_{k=1}^{\infty }\frac{1}{k(k+1)}=1$, where the last equality it by telescoping:$\displaystyle\sum_{k=1}^{t}\frac{1}{k(k+1)}=\sum_{k=1}^{t}( \frac{1}{k}-\frac{1}{k+1})=\frac{1}{1}-\frac{1}{t+1}\to1$ as $t\to\infty$.
 
The real 'challenge' was in the fact that the correct result is...

$\displaystyle \sum_{n=2}^{\infty} \{1-\zeta(n)\}= -\sum_{n=2}^{\infty}\sum_{k=2}^{\infty} \frac{1}{k^{n}}=...=-1$

... that isn't 1 of course (Wasntme)...

Kind regards

$\chi$ $\sigma$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
4
Views
2K
Replies
5
Views
3K
Replies
7
Views
2K
Replies
4
Views
1K
Replies
5
Views
2K
Replies
3
Views
2K
Replies
0
Views
2K
Replies
4
Views
2K
Back
Top