A particle's momentum in a magnetic field

  • Thread starter Thread starter Antoha1
  • Start date Start date
AI Thread Summary
To calculate a particle's momentum in a magnetic field, the centripetal acceleration formula is applied, linking velocity, radius, and Lorentz force. The momentum is derived using the relationship between the radius of circular motion and the velocity components, particularly focusing on the component perpendicular to the magnetic field. The final expression for momentum is given as p = (Blqsinα)/(2π), emphasizing the importance of the angle and the magnetic field strength. There is a discussion about whether to consider the sum of velocity vectors, as momentum has components in both directions. The calculations presented seem valid, and the approach is generally accepted.
Antoha1
Messages
15
Reaction score
2
Homework Statement
A particle with a charge equal to that of an electron enters a magnetic field. The direction of the particle's velocity
makes an angle of 45 degrees with the magnetic field lines. The particle moves in a spiral with a pitch of
##l##=2 cm. What is the magnitude of the particle's momentum when the magnetic field induction B is 0.02 T ?
Relevant Equations
##F_{Lorenz}=qvBsin\alpha##
##F_{centrifugal}=\frac{mv^{2}}{R}##
In this case:
##F_{Lorenz}=F_{centrifugal}##
to calculate momentum (p), do I need to use sum of speed vectors? Maybe someone can help me to solve this problem. For now, my solution looks like this:

$$a_{centrifugal}=\frac{v^2}{R}=\frac{F_{Lorenz}}{m}=\frac{qvBsin\alpha}{m}$$
$$\frac{v}{R}=\frac{qBsin\alpha}{m}\implies m=\frac{qRBsin\alpha}{v}$$
then getting R (T here is time period):
while particle is spinning around magnetic field lines (around x) and going to the side (direction x), the circumstance and ##l## are done in the same period of time (T)
$$T_{1}=T_{2}$$
$$\frac{l}{v_{x}}=\frac{2\pi R}{v}$$
$$v_{x}=vcos\alpha$$
Then R:
$$R=\frac{l}{2\pi cos\alpha}$$
then getting back and putting R there:
$$p=mv_{x}=mvcos\alpha=\frac{qBRsin\alpha}{v}\cdot vcos\alpha=\frac{qBlsin\alpha}{2\pi cos\alpha}\cdot cos\alpha=\frac{Blqsin\alpha}{2\pi}$$
$$p=\frac{Blqsin\alpha}{2\pi}$$
I am not sure about momentum being calculated like that, should it be sum of both vectors maybe, or how it works? can someone explain to me, or solve this problem? Thanks.
 
Last edited:
Physics news on Phys.org
The velocity of the circular motion is not the full velocity but just the component perpendicular to the field. And yes, the momentum have components on both directions.
 
nasu said:
The velocity of the circular motion is not the full velocity but just the component perpendicular to the field. And yes, the momentum have components on both directions.
I have came up with different solution. Could you check it aswell? Do not mind language. I'm adding image.
 

Attachments

  • IMG_9751.jpeg
    IMG_9751.jpeg
    55.1 KB · Views: 28
Antoha1 said:
I have came up with different solution. Could you check it aswell? Do not mind language. I'm adding image.
1744840280005.png

This looks good to me.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top