I've not been reading most of the posts, but I can comment on some recent ones.
You seem to be confusing numbers with their representations.
Agent Smith said:
@FrabjousMy hunch is that ##22/7## is of historical importance. Was it Archimedes who used it as the lower bound for ##\pi##?
22/7 is simple. The numbers are smaller and thus simpler than 314/100. The latter is only convenient if decimal arithmetic is used, and arguably not even then since I can multiply reasonable numbers by 22 in my head, and also divide by 7, but multiplying by 314 probably takes longer.
A non-human would probably not use decimal arithmetic, but then a non-human would probably not look for a simple approximation. A binary computer can divide by 2 with a simple shift operation, but when presented with x/y with y being 2, it will perform the op the hard way and not opt for the easy optimization.
22/7 is greater than pi, so I suppose it can express one upper bound of it, not a lower bound.
Agent Smith said:
I wonder now about how objects that have circular components (spheres, cylinders, cones) are constructed at all and constructed as accurately as possible.
They're typically not constructed as accurately as possible, as evidenced by the total lack of a circle in the universe. They're made to specified tollerances, and it's an engineering problem. The LHC has very tight tollerances. A round building not nearly so much, and nowhere near as much effort needs to be expended on making it closer.
Agent Smith said:
You said ##\pi## isn't necessary to construct a circle (compasses don't use ##\pi##).
Another example: There are circles in nature. I have a spot nearby just below a small waterfall that gets a circular chunk of ice (perhaps 15 meters in diameter?) any winter when the conditions are right. It is very close to a circle, with the radius deviating probably less than a cm. There's a very large version of one about 500 km west of me.
https://en.wikipedia.org/wiki/Ice_circle
To my vast surprise, the 3rd picture down, long exposure, is the one by me. I can walk to that one. Ours is a little bit famous!
Agent Smith said:
I can imagine using ##\pi## as some kind of a check for how circular an object is: measure circumference (c), measure diameter (d) and find the ratio (c/d). The closer c/d is to ##\pi## the more circular the object is, oui?
Not so sure. For one, if it isn't a circle, it doesn't have a diameter, by definition. But one can take a cross section of a near-circle. So I hand-draw a crude circle on a piece of paper. I use a wheel-pen that measured the length of the line I draw using a little trailing wheel, similar to the ones they put on cars for accurate road-length measurement. My 'circle' has a circumference of exactly 31.4 cm, but it's a botched job. Few can freehand a decent straight line, let alone a decent circle. Anyway, a cross section through the middle (a diameter) taken in the right place, will be 10 cm. Is this evidence that it is a good circle? Certainly not. The diameter measured at a different angle will be different.
Similarly, I have a perfect globe and I want to hand-draw an equator on it using a paint truck. But the truck goes around well to the north and its path deviates from side to side, leaving a bad circle again. But it's length is again exactly (by chance) ##\pi## times the radius of the globe, and this time every point is equidistant from that globe center.
Point is, your criteria is insufficient evidence of circularity.