A question about Green's function

Click For Summary
The discussion revolves around constructing a particular solution for a second-order nonhomogeneous equation of motion using Green's function. The equation is defined with nonzero initial conditions at t = -∞, and the homogeneous solutions are identified as y1(x) and y2(x). The proposed solution involves integrating a Green's function, G(x,x'), which is derived from the homogeneous solutions. However, the user encounters divergence issues when calculating with the lower bound at -∞, raising questions about the validity of their approach. Alternative methods for obtaining Green's function are suggested, indicating that there may be other viable solutions to the problem.
karlzr
Messages
129
Reaction score
2
There is a second order nonhomogeneous equation of motion with nonzero initial condition given at ##t=-\infty##:
##D^2 y(x)=f(x)## with ##y(-\infty)=e^{-i x}##
where I have used the shorthand notation ##D^2## for the full differential operator. Also I have the two solutions ##y_1(x)## and ##y_2(x)## to the homogeneous equation with ##y_1(x \to -\infty) \approx e^{-ix}## and ##y_2(x \to -\infty) \approx e^{ix}##. So how do I construct the particular solution using ##y_1(x)## and ##y_2(x)##?

I know Green's function can be constructed using the two homogeneous solutions. So the naive solution I got is
##y(x)=y_1(x)+\int^x_{-\infty} dx' G(x,x')f(x')## with
##G(x,x')=\frac{y_1(x)y_2(x')-y_2(x)y_1(x')}{W(y_2(x'),y_1(x'))}##.

Is it wrong? since I get some ridiculous result (divergence) when I use this solution to do calculation, because the lower bound is ##-\infty##.
 
Physics news on Phys.org
karlzr said:
I know Green's function can be constructed using the two homogeneous solutions. So the naive solution I got is
##y(x)=y_1(x)+\int^x_{-\infty} dx' G(x,x')f(x')## with
##G(x,x')=\frac{y_1(x)y_2(x')-y_2(x)y_1(x')}{W(y_2(x'),y_1(x'))}##.

Is it wrong? since I get some ridiculous result (divergence) when I use this solution to do calculation, because the lower bound is ##-\infty##.
Where are you getting this out of curiosity? There are other ways to obtain the Green's function, at least.
 
MisterX said:
Where are you getting this out of curiosity? There are other ways to obtain the Green's function, at least.
Actually I obtained this expression from the approach of variation of parameters. It plays the role of Green's function in this case.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K