MHB A question about surjective module-homomorphisms

  • Thread starter Thread starter steenis
  • Start date Start date
  • Tags Tags
    Surjective
steenis
Messages
312
Reaction score
18
I have the following question about surjective module-homomorphisms.

Let $f:A \longrightarrow B$ be a surjective $R$-homomorphism between $R$-modules $A$ and $B$.
Let $S, T$ be submodules of $A$ and let $X, Y$ be submodules of $B$.

I can prove that in general
$$f(S+T)=f(S)+f(T)$$
and in general
$$f^{-1}(X)+ f^{-1}(Y) \subseteq f^{-1}(X+Y)$$
If $f$ is surjective we can combine these two, and we have
$$f(f^{-1}(X)+ f^{-1}(Y))=f f^{-1}(X)+f f^{-1}(Y)=X+Y$$
But I need this:
$$f^{-1}(X)+ f^{-1}(Y)=f^{-1}(X+Y)$$
given that $f$ is surjective.

I cannot find the proof and I do not know if it is true, can somebody help me to prove this or give a counterexample or give a reference?
 
Physics news on Phys.org
steenis said:
I have the following question about surjective module-homomorphisms.

Let $f:A \longrightarrow B$ be a surjective $R$-homomorphism between $R$-modules $A$ and $B$.
Let $S, T$ be submodules of $A$ and let $X, Y$ be submodules of $B$.

I can prove that in general
$$f(S+T)=f(S)+f(T)$$
and in general
$$f^{-1}(X)+ f^{-1}(Y) \subseteq f^{-1}(X+Y)$$
If $f$ is surjective we can combine these two, and we have
$$f(f^{-1}(X)+ f^{-1}(Y))=f f^{-1}(X)+f f^{-1}(Y)=X+Y$$
But I need this:
$$f^{-1}(X)+ f^{-1}(Y)=f^{-1}(X+Y)$$
given that $f$ is surjective.

I cannot find the proof and I do not know if it is true, can somebody help me to prove this or give a counterexample or give a reference?
If $a\in f^{-1}(X+Y)$ then $f(a) = x+y$, for some $x$ in $X$ and $y$ in $Y$. If $f$ is surjective then $x = f(b)$ and $y = f(c)$, for some $b,c\in A$. If $d = a-b-c$ then $f(d) = f(a) - f(b) - f(c) = 0.$ It follows that $b+d \in f^{-1}(X)$, and then $a = (b+d) + c \in f^{-1}(X)+ f^{-1}(Y)$.

That shows that $ f^{-1}(X+Y) \subseteq f^{-1}(X)+ f^{-1}(Y)$. You have already shown the reverse inequality, so it follows that $ f^{-1}(X+Y) = f^{-1}(X)+ f^{-1}(Y)$.
 
Thank you very much, This is a great help !
 
Doe anyone know references (books or online) in which this kind of "fomulae" of modules (or groups or rings, ...) are listed and maybe proved ?
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top