MHB A question on consistency in propositional logic.

Mathelogician
Messages
35
Reaction score
0
Hi everybody!

We have a theorem in natural deduction as follows:
Let H be a set of hypotheses:
====================================
H U {~phi) is inconsistent => H implies (phi).
====================================
Now the question arises:

Let H={p0} for an atom p0. So H U{~p0}={p0 , ~p0}.
We know that {p0 , ~p0} is inconsistent, so by our theorem we would have:
{p0} implies ~p0.
Which we know is impossible.(because for example it means that ~p0 is a semantical consequence of p0).

Now what's wrong here?
Thanks
 
Physics news on Phys.org
Well, your theorem or schema is negating the phi, which you're not doing. In your example, you should end up with {p0} implies p0. No doubt Evgeny can correct any mistakes I just made.
 
Ackbach said:
Well, your theorem or schema is negating the phi, which you're not doing. In your example, you should end up with {p0} implies p0.
You are right. If we apply the theorem to H U{~p0}, then phi from the theorem is p0. Therefore, the theorem concludes that {p0} implies p0.
 
Oooooooops!
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top