A question on continuous function

Click For Summary
SUMMARY

The discussion centers on the function defined on the interval [0,1], where f(x) = 1/q for x = p/q (in simplest form) and f(x) = 0 for x = 0 or irrational numbers. Participants confirm that the set of discontinuities of f(x) consists of all non-zero rationals in [0,1]. The limit of f(x) approaches zero at every point, and the function is Riemann integrable due to the set of discontinuities having Lebesgue measure zero. The use of convergent sequences and the Cauchy definition of limits are emphasized as valid approaches to demonstrate these properties.

PREREQUISITES
  • Understanding of Riemann integrability
  • Familiarity with limits and continuity in real analysis
  • Knowledge of Lebesgue measure theory
  • Proficiency in working with rational numbers and their properties
NEXT STEPS
  • Study the properties of Riemann integrable functions
  • Learn about Lebesgue measure and its implications for discontinuities
  • Explore the Cauchy definition of limits in depth
  • Investigate the implications of sequences of rational numbers in real analysis
USEFUL FOR

Mathematics students, particularly those studying real analysis, Riemann integration, and measure theory, will benefit from this discussion. It is also valuable for educators seeking to clarify concepts related to continuity and integrability.

priyanka@
Messages
5
Reaction score
0
can anybody please help me in solving the following question:

consider the function on [0,1] f(x)=1/q if x=p/q, p&q are non zero & p,q are positive integers,
p/q is in simplest form.
= 0 if x=0 or irrational

need to show the set of discontinuities of f(x) is the set of all non zero rationals in [0,1]
 
Last edited by a moderator:
Physics news on Phys.org
Quick sketch:
Show that for each real number a, limit of d as x goes to a is 0. You can do that by showing that rationals with bounded numerator are nowhere dense. From this everything you need to prove follows trivially.
Good luck!
 
Thanks for the help..but I'm still not very clear with your answer. I was thinkng of doing this by using sequential continuity..like takng a random seq. <an> of non zero rationals converging to a non zero rational x. And then claiming <f(an)> not converging to f(x)..so don't know whether this approach is correct..
 
Last edited by a moderator:
Yes, it's correct. By taking any convergent sequence, we can show that limit of a function is zero at every point. It can be done from Cauchy definition of limit as well. Given a real number x, and arbitrary \epsilon, we show that in some neighbour of x rationals have denominators (I've made a mistake in previous post) large enough for function to have values less than \epsilon. Your approach (sequences) is essentially the same.
 
priyanka@ said:
can anybody pls help me in solving d following question:

consider d function on [0,1] f(x)=1/q if x=p/q, p&q are non zero & p,q are +ve integers,
p/q is in simplest form.
= 0 if x=0 or irrational

need to show the set of discontinuities of f(x) is the set of all non zero rationals in [0,1]

This is not a particularly difficult question, but it most certainly sounds like a question from a class -- either homework or a test question.

So please explain the origin of the question and why providing you with an approach or an answer is consistent within the ethics of the course -- is not cheating.

When I took such classes, obtaining outside help on a question like this would have clearly been considered cheating.
 
Last edited:
this is neithr a homework nor a test question...m doing my msc. now...its a question of riemann integral dat i studied in b.sc...was going thru my notes...v actually need 2 show dis function is riemann integrable bt v cannot use d result"a bdd. functn for which d set of discontnuities has finfitely many limit points is riemann integrable." as dis isn't d case here..my prof. told me d set of continuities of dis fiunction bt i jst wantd 2 verify myself...was getng lil confused...so askd 4 help...jst 2 add 2 my knowledge...dats it..n nt 2 get gud marks or appreciation frm d prof...m nt into all dese thngs...
 
priyanka@ said:
this is neithr a homework nor a test question...m doing my msc. now...its a question of riemann integral dat i studied in b.sc...was going thru my notes...v actually need 2 show dis function is riemann integrable bt v cannot use d result"a bdd. functn for which d set of discontnuities has finfitely many limit points is riemann integrable." as dis isn't d case here..my prof. told me d set of continuities of dis fiunction bt i jst wantd 2 verify myself...was getng lil confused...so askd 4 help...jst 2 add 2 my knowledge...dats it..n nt 2 get gud marks or appreciation frm d prof...m nt into all dese thngs...

It is Riemann integrable because the set of discontinuities has Lebesgue measure 0.
 
thnx..bt i knew dis function is rieman integrble...was stuck up sumwhere else...
 
losiu99 said:
Yes, it's correct. By taking any convergent sequence, we can show that limit of a function is zero at every point. It can be done from Cauchy definition of limit as well. Given a real number x, and arbitrary \epsilon, we show that in some neighbour of x rationals have denominators (I've made a mistake in previous post) large enough for function to have values less than \epsilon. Your approach (sequences) is essentially the same.

thank you for the help..i have got it..
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
34
Views
3K
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
5
Views
2K
  • · Replies 24 ·
Replies
24
Views
4K
Replies
7
Views
2K
  • · Replies 51 ·
2
Replies
51
Views
5K
Replies
7
Views
1K