A question on particle-antiparticle chirality.

  • Context: Graduate 
  • Thread starter Thread starter Dappy
  • Start date Start date
  • Tags Tags
    Chirality
Click For Summary
SUMMARY

The discussion clarifies the concepts of chirality and helicity in particle physics, emphasizing that both matter and antimatter particles consist of left and right chirality components, with the exception of neutrinos, which are exclusively left chiral. It highlights that "left-handed" and "right-handed" refer to the eigenstates of chirality and helicity, with helicity being the projection of spin in the direction of motion. The relationship between these concepts is crucial for understanding particle interactions, particularly with the weak force, as outlined in the Standard Model.

PREREQUISITES
  • Understanding of particle physics concepts, specifically chirality and helicity.
  • Familiarity with the Standard Model of particle physics.
  • Knowledge of spin and momentum in quantum mechanics.
  • Basic understanding of neutrinos and their properties.
NEXT STEPS
  • Research the differences between chirality and helicity in detail.
  • Study the role of chirality in the Standard Model of particle physics.
  • Explore the properties of neutrinos and their interactions.
  • Examine the implications of helicity in massive versus massless particles.
USEFUL FOR

Physicists, students of particle physics, and anyone interested in the fundamental properties of matter and antimatter, particularly in the context of quantum mechanics and the Standard Model.

Dappy
Messages
23
Reaction score
0
Concerning chirality, I recently read that matter is left-handed and that antimatter is right-handed. Are matter particles left- handed as seen from in front or behind? As an electron can have spin up or spin down and a positron has opposite spin up and opposite spin down. So I was thinking that to determine the difference between them we mast have a preference of from in front or behind.
 
Physics news on Phys.org
For particles, 'left handed' means that the spin is in the opposite direction of the momentum.
That could be interpreted as meaning you are looking at the rotation of the spin (if it did rotate) from behind.
This can lead to some confusion for a photon. A left handed photon corresponds to right handed circular polarization, because the polarization of light is as it comes toward you.
 
Dappy said:
Concerning chirality, I recently read that matter is left-handed and that antimatter is right-handed.

This is not the case. Both matter and anti-matter particles are made up of both left and right chirality components (essentially they are a superposition of them). Except for neutrinos, which are only left chiral (with the corresponding anti-neutrinos being right chiral)

Dappy said:
Are matter particles left- handed as seen from in front or behind? As an electron can have spin up or spin down and a positron has opposite spin up and opposite spin down. So I was thinking that to determine the difference between them we mast have a preference of from in front or behind.

One thing to keep in mind is that "chirality" and "helicity" are different (but related) operators, but the words "left-handed" and "right-handed" are used to describe the eigenstates of both of them. Only for massless particles do the eigenstates of each coincide.

What you are describing is helicity, which is the projection of spin in the direction of motion of a particle, i.e. $$h = \vec{S}\cdot\vec{p}$$ A particle is "right handed" if this comes out positive , i.e. the spin and momentum vectors point in the same direction. This is not Lorentz invariant though, because if your particle is massive then you can boost to a reference frame where the momentum vector is reversed, so the helicity is also reversed.

Chirality is more abstract, but is important in the Standard Model for determining if a particle interacts with the weak force or not. It is not an awesome article, but you could check out this wikipedia page for a little more detail: http://en.wikipedia.org/wiki/Chirality_(physics )
 
Last edited by a moderator:
  • Like
Likes   Reactions: 1 person

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
6K
  • · Replies 21 ·
Replies
21
Views
4K