MHB A Strange Probability Exercise

AI Thread Summary
A user from Greece is seeking assistance with a probability exercise involving a probability density function defined as P(Y=y/X=x)=f(y,x) = $${n \choose y}* {x}^{y} * ({1-x})^{n-y}$. The user is unsure about the meaning of $f_x$ in relation to the conditional probability density and requests clarification. They express gratitude for any help and mention they have a photo of the exercise for better understanding. The discussion highlights the need for clearer communication regarding the mathematical terms involved.
Greekguy
Messages
2
Reaction score
0
Hello and I would like to thank you for your space in this website

I'm from Greece and i have exams in next days

I need some help with an exercise that I can not solve!

There is a probability density function with the following type :

P(Y=y/X=x)=f(y,x)= $${n \choose y}* {x}^{y} * ({1-x})^{n-y}=\begin{cases} \\ \end{cases}$$ (i don't know how to delete the last two symbols the "=" and the "{")
y=0,1,2,,,n

fxX=1 for 0<=x<=1 and fxX=0 in other space. Find E(Y)I wish that there is someone who could help me with this mountain!

Thank you !
 
Last edited:
Mathematics news on Phys.org
Hi, Greekguy! (Wave)

It's not clear what $f_x$ represents, because it does not relate to the conditional probability density $f(y,x)$. Could you be more explicit?
 
Euge said:
Hi, Greekguy! (Wave)

It's not clear what $f_x$ represents, because it does not relate to the conditional probability density $f(y,x)$. Could you be more explicit?
Thank you so much with your time! i exprees the exercise with a photo and if you can, help me :)View attachment 6370
 

Attachments

  • ασκηση2.png
    ασκηση2.png
    48 KB · Views: 103
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
3
Views
1K
Replies
17
Views
1K
Replies
2
Views
2K
Replies
1
Views
2K
Replies
8
Views
2K
Back
Top