MHB A Strange Probability Exercise

Click For Summary
A user from Greece is seeking assistance with a probability exercise involving a probability density function defined as P(Y=y/X=x)=f(y,x) = $${n \choose y}* {x}^{y} * ({1-x})^{n-y}$. The user is unsure about the meaning of $f_x$ in relation to the conditional probability density and requests clarification. They express gratitude for any help and mention they have a photo of the exercise for better understanding. The discussion highlights the need for clearer communication regarding the mathematical terms involved.
Greekguy
Messages
2
Reaction score
0
Hello and I would like to thank you for your space in this website

I'm from Greece and i have exams in next days

I need some help with an exercise that I can not solve!

There is a probability density function with the following type :

P(Y=y/X=x)=f(y,x)= $${n \choose y}* {x}^{y} * ({1-x})^{n-y}=\begin{cases} \\ \end{cases}$$ (i don't know how to delete the last two symbols the "=" and the "{")
y=0,1,2,,,n

fxX=1 for 0<=x<=1 and fxX=0 in other space. Find E(Y)I wish that there is someone who could help me with this mountain!

Thank you !
 
Last edited:
Mathematics news on Phys.org
Hi, Greekguy! (Wave)

It's not clear what $f_x$ represents, because it does not relate to the conditional probability density $f(y,x)$. Could you be more explicit?
 
Euge said:
Hi, Greekguy! (Wave)

It's not clear what $f_x$ represents, because it does not relate to the conditional probability density $f(y,x)$. Could you be more explicit?
Thank you so much with your time! i exprees the exercise with a photo and if you can, help me :)View attachment 6370
 

Attachments

  • ασκηση2.png
    ασκηση2.png
    48 KB · Views: 116
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K