A thought experiment concerning determinism in quantum mechanics

Click For Summary
SUMMARY

This discussion centers on the determinism in quantum mechanics, specifically contrasting the Copenhagen interpretation and the many-worlds interpretation (MWI). The Copenhagen interpretation is established as non-deterministic, where only one measurement result occurs and predictions are probabilistic due to the uncertainty principle. In contrast, the MWI is deterministic, asserting that all possible outcomes occur for every measurement. The conversation also highlights the Born rule's role in predicting probabilities and the complexities surrounding the measurement of incompatible observables.

PREREQUISITES
  • Understanding of the uncertainty principle in quantum mechanics
  • Familiarity with the Born rule and its implications
  • Knowledge of the Copenhagen interpretation of quantum mechanics
  • Awareness of the many-worlds interpretation (MWI)
NEXT STEPS
  • Research the implications of the Born rule in quantum mechanics
  • Explore the differences between the Copenhagen interpretation and many-worlds interpretation
  • Study the Heisenberg-Robertson uncertainty principle in detail
  • Read "Quantum Measurement" by Busch et al. (2016) for advanced insights
USEFUL FOR

Physicists, quantum mechanics students, and anyone interested in the philosophical implications of determinism and measurement in quantum theory.

Spathi
Gold Member
Messages
102
Reaction score
10
TL;DR
According to the uncertainty principle, when we measure a micro-object with a measuring device, we cannot predict what value the device will show. But if we knew exactly the wave function of this device, together with the wave function of the micro-object, could we exactly predict the result of the measurement?
According to the uncertainty principle, when we measure a micro-object with a measuring device, we cannot predict what value the device will show. But if we knew exactly the wave function of this device, together with the wave function of the micro-object, could we exactly predict the result of the measurement?
The question is, in other words, how modern quantum mechanics treats determinism. I’ve heard, that the Copenhagen interpretation is not-deterministic, while the many-worlds interpretation is deterministic. Can you help me understand these statements?
 
Physics news on Phys.org
Spathi said:
According to the uncertainty principle, when we measure a micro-object with a measuring device, we cannot predict what value the device will show.
That's not the uncertainty principle. The uncertainty principle has to do with measurements of two non-commuting observables. It says nothing whatever about whether or not you can predict the result of a measurement of a single observable.

The fact that, if a quantum system is not in an eigenstate of the observable we are measuring, we cannot predict with certainty what the measurement result will be, but can only predict probabilities, is just the Born rule (which in addition tells you how to predict the probabilities).

Spathi said:
if we knew exactly the wave function of this device, together with the wave function of the micro-object, could we exactly predict the result of the measurement?
No, because, as above, the thing that makes the prediction only probabilistic is that the quantum system is not in an eigenstate of the observable being measured. Knowing the measuring device's exact wave function does not change that.

Spathi said:
I’ve heard, that the Copenhagen interpretation is not-deterministic, while the many-worlds interpretation is deterministic.
That's correct. The Copenhagen interpretation is non-deterministic because in this interpretation, only one result occurs for any measurement, and predicting that result can only be done probabilitistically for the reasons given above.

The MWI is deterministic because in this interpretation, all possible results occur for every measurement; that is the deterministic result of every measurement. This, of course, raises the question of what the "probabilities" that the Born rule talks about even mean, which is one of the critical issues many physicists see with the MWI.
 
  • Like
Likes   Reactions: vanhees71 and PeroK
The usual Heisenberg-Robertson uncertainty principle in introductory textbooks is not about measurability of observables but about the possibility to prepare states. It says that it is in general not possible to prepare a system in a state, where two observables, whose representing self-adjoint operators do not commute ("incompatible observables"), take a determined value. E.g., it is impossible to prepare a particle in a state such that both position and momentum are determined very accurately. This possibility is constraint by the uncertainty relation between components of the position and momentum vectors in the same direction, ##\Delta x \Delta p \geq \hbar/2##.

This has nothing to do with our ability to measure either observable as accurately as we want (given enough expertise and resources to construct the necessary measurement devices, of course). Rather it is a property of the particle, described by the state it is prepared in.

The question about the disturbance of the system by measurement and the possibility or impossibility to meausure two incompatible observables is a much more complicated question and subject to ongoing research. A recent textbook on these issues is

Busch, P., Lahti, P., Pellonpää, J. P., & Ylinen, K. (2016). Quantum measurement (Vol. 23). Berlin: Springer.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
8K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
3
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K