I A thought experiment concerning determinism in quantum mechanics

Spathi
Gold Member
Messages
102
Reaction score
10
TL;DR Summary
According to the uncertainty principle, when we measure a micro-object with a measuring device, we cannot predict what value the device will show. But if we knew exactly the wave function of this device, together with the wave function of the micro-object, could we exactly predict the result of the measurement?
According to the uncertainty principle, when we measure a micro-object with a measuring device, we cannot predict what value the device will show. But if we knew exactly the wave function of this device, together with the wave function of the micro-object, could we exactly predict the result of the measurement?
The question is, in other words, how modern quantum mechanics treats determinism. I’ve heard, that the Copenhagen interpretation is not-deterministic, while the many-worlds interpretation is deterministic. Can you help me understand these statements?
 
Physics news on Phys.org
Spathi said:
According to the uncertainty principle, when we measure a micro-object with a measuring device, we cannot predict what value the device will show.
That's not the uncertainty principle. The uncertainty principle has to do with measurements of two non-commuting observables. It says nothing whatever about whether or not you can predict the result of a measurement of a single observable.

The fact that, if a quantum system is not in an eigenstate of the observable we are measuring, we cannot predict with certainty what the measurement result will be, but can only predict probabilities, is just the Born rule (which in addition tells you how to predict the probabilities).

Spathi said:
if we knew exactly the wave function of this device, together with the wave function of the micro-object, could we exactly predict the result of the measurement?
No, because, as above, the thing that makes the prediction only probabilistic is that the quantum system is not in an eigenstate of the observable being measured. Knowing the measuring device's exact wave function does not change that.

Spathi said:
I’ve heard, that the Copenhagen interpretation is not-deterministic, while the many-worlds interpretation is deterministic.
That's correct. The Copenhagen interpretation is non-deterministic because in this interpretation, only one result occurs for any measurement, and predicting that result can only be done probabilitistically for the reasons given above.

The MWI is deterministic because in this interpretation, all possible results occur for every measurement; that is the deterministic result of every measurement. This, of course, raises the question of what the "probabilities" that the Born rule talks about even mean, which is one of the critical issues many physicists see with the MWI.
 
  • Like
Likes vanhees71 and PeroK
The usual Heisenberg-Robertson uncertainty principle in introductory textbooks is not about measurability of observables but about the possibility to prepare states. It says that it is in general not possible to prepare a system in a state, where two observables, whose representing self-adjoint operators do not commute ("incompatible observables"), take a determined value. E.g., it is impossible to prepare a particle in a state such that both position and momentum are determined very accurately. This possibility is constraint by the uncertainty relation between components of the position and momentum vectors in the same direction, ##\Delta x \Delta p \geq \hbar/2##.

This has nothing to do with our ability to measure either observable as accurately as we want (given enough expertise and resources to construct the necessary measurement devices, of course). Rather it is a property of the particle, described by the state it is prepared in.

The question about the disturbance of the system by measurement and the possibility or impossibility to meausure two incompatible observables is a much more complicated question and subject to ongoing research. A recent textbook on these issues is

Busch, P., Lahti, P., Pellonpää, J. P., & Ylinen, K. (2016). Quantum measurement (Vol. 23). Berlin: Springer.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top