A uniformly charged rotating sphere does not radiate, why not?

AI Thread Summary
A uniformly charged rotating sphere does not radiate because its charge and current distributions are time-independent, resulting in static electric and magnetic fields. The constant angular velocity implies that the electric field remains constant, leading to a zero magnetic field and Poynting vector. This scenario is analogous to direct current in a loop of wire, which only radiates during changes, not during steady-state conditions. The Jefimenko solutions indicate that radiation fields are only produced by time-varying charge or current densities, which are absent in this case. Therefore, the lack of time dependence in the system explains why no radiation occurs.
wykk
Messages
1
Reaction score
0
Thread moved from the technical forums to the schoolwork forums
The problem says I have a spherically symmetric spinning constant charge distribution of charge Q and angular momentum w; I saw two possible explanations but none of them has made me realize why it is zero, one mentions thata constant w somehow implies a constant E which would mean there is no B and poynting vector would be zero.
Another mentions that the charge distribution rho is constant therefore J the current density is too and B becomes zero but I don't know how to derive an expression that relates B and J
 
Physics news on Phys.org
Hi @wykk and welcome to PF.

If this is a homework problem, it should be posted under Introductory Physics Homework with the template provided. Please read the forum homework help guidelines before posting there. I would also strongly recommend posting the exact description of the question as given to you. Providing links to the explanations that you saw would also be helpful as it is possible that you may have misconstrued what you read.
 
It's because the charge and current distributions are time-independent. Thus you also have static fields. I suppose it's meant that the angular velocity ##\vec{\omega}=\text{const}##.
 
  • Like
Likes sophiecentaur
vanhees71 said:
It's because the charge and current distributions are time-independent. Thus you also have static fields. I suppose it's meant that the angular velocity ##\vec{\omega}=\text{const}##.
It's the equivalent of DC passing round a loop of wire; no radiation except at switch on.
 
Look at the form of the Jefimenko solutions, which are the solutions to electromagnetism in free space. Only the terms that go as ##1/|r-r'|## contribute to the radiation field, all three of these terms are proportional to ##\dot \rho## or ##\dot{\mathbf J}## which are both zero in the case of a spherically symmetric spinning body (or even an axially symmetric one).
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top