A uniformly charged rotating sphere does not radiate, why not?

AI Thread Summary
A uniformly charged rotating sphere does not radiate because its charge and current distributions are time-independent, resulting in static electric and magnetic fields. The constant angular velocity implies that the electric field remains constant, leading to a zero magnetic field and Poynting vector. This scenario is analogous to direct current in a loop of wire, which only radiates during changes, not during steady-state conditions. The Jefimenko solutions indicate that radiation fields are only produced by time-varying charge or current densities, which are absent in this case. Therefore, the lack of time dependence in the system explains why no radiation occurs.
wykk
Messages
1
Reaction score
0
Thread moved from the technical forums to the schoolwork forums
The problem says I have a spherically symmetric spinning constant charge distribution of charge Q and angular momentum w; I saw two possible explanations but none of them has made me realize why it is zero, one mentions thata constant w somehow implies a constant E which would mean there is no B and poynting vector would be zero.
Another mentions that the charge distribution rho is constant therefore J the current density is too and B becomes zero but I don't know how to derive an expression that relates B and J
 
Physics news on Phys.org
Hi @wykk and welcome to PF.

If this is a homework problem, it should be posted under Introductory Physics Homework with the template provided. Please read the forum homework help guidelines before posting there. I would also strongly recommend posting the exact description of the question as given to you. Providing links to the explanations that you saw would also be helpful as it is possible that you may have misconstrued what you read.
 
It's because the charge and current distributions are time-independent. Thus you also have static fields. I suppose it's meant that the angular velocity ##\vec{\omega}=\text{const}##.
 
  • Like
Likes sophiecentaur
vanhees71 said:
It's because the charge and current distributions are time-independent. Thus you also have static fields. I suppose it's meant that the angular velocity ##\vec{\omega}=\text{const}##.
It's the equivalent of DC passing round a loop of wire; no radiation except at switch on.
 
Look at the form of the Jefimenko solutions, which are the solutions to electromagnetism in free space. Only the terms that go as ##1/|r-r'|## contribute to the radiation field, all three of these terms are proportional to ##\dot \rho## or ##\dot{\mathbf J}## which are both zero in the case of a spherically symmetric spinning body (or even an axially symmetric one).
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top